Skip to main content
Log in

Observation of a finger or an object movement primes imitative responses differentially

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Behavioural advantages for imitation of human movements over movements instructed by other visual stimuli are attributed to an ‘action observation-execution matching’ (AOEM) mechanism. Here, we demonstrate that priming/exogenous cueing with a videotaped finger movement stimulus (S1) produces specific congruency effects in reaction times (RTs) of imitative responses to a target movement (S2) at defined stimulus onset asynchronies (SOAs). When contrasted with a moving object at an SOA of 533 ms, only a human movement is capable of inducing an effect reminiscent of ‘inhibition of return’ (IOR), i.e. a significant advantage for imitation of a subsequent incongruent as compared to a congruent movement. When responses are primed by a finger movement at SOAs of 533 and 1,200 ms, inhibition of congruent or facilitation of incongruent responses, respectively, is stronger as compared to priming by a moving object. This pattern does not depend on whether S2 presents a finger movement or a moving object, thus effects cannot be attributed to visual similarity between S1 and S2. We propose that, whereas both priming by a finger movement and a moving object induces processes of spatial orienting, solely observation of a human movement activates AOEM. Thus, S1 immediately elicits an imitative response tendency. As an overt imitation of S1 is inadequate in the present setting, the response is inhibited which, in turn, modulates congruency effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In the classical redundant-targets effect paradigm (RTE) subjects respond to stimuli that are lateralised either to the left or to the right of fixation or presented bilaterally. However, response facilitation has also been observed for responses to unilateral multiple targets (Pollmann and Zaidal 1999).

Abbreviations

AOEM:

Action observation-execution matching

S1:

First/prime stimulus

S2:

Second/target stimulus

RT:

Reaction time

SOA:

Stimulus onset asynchrony

IOR:

Inhibition of return

PP:

Positive priming

RTE:

Redundant-targets effect

ANOVA:

Analysis of variance

References

  • Annett M (1985) Left, right, hand and brain: the right shift theory. Erlbaum, London

    Google Scholar 

  • Aziz-Zadeh L, Maeda F, Zaidel E, Mazziotta J, Iacoboni M (2002) Lateralization in motor facilitation during action observation: a tms study. Exp Brain Res 144(1):127–131

    Article  PubMed  Google Scholar 

  • Baldissera F (2001) Modulation of spinal excitability during observation of hand actions in humans. Eur J Neurosci 13:190–194

    Article  PubMed  CAS  Google Scholar 

  • Bertenthal BI, Longo MR, Kosobud A (2006) Imitative response tendencies following observation of intransitive actions. J Exp Psychol Hum Percept Perform 32(2):210–225

    Article  PubMed  Google Scholar 

  • Brass M, Bekkering H, Prinz W (2001a) Movement observation affects movement execution in a simple response task. Acta Psychol 106(1–2):3–22

    Article  CAS  Google Scholar 

  • Brass M, Bekkering H, Wohlschläger A, Prinz W (2000) Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain Cogn 44(2):124–143

    Article  PubMed  CAS  Google Scholar 

  • Brass M, Derrfuss J, von Cramon DY (2005) The inhibition of imitative and overlearned responses: a functional double dissociation. Neuropsychologia 43(1):89–98

    Article  PubMed  Google Scholar 

  • Brass M, Heyes C (2005) Imitation: is cognitive neuroscience solving the correspondence problem? Trends Cogn Sci 9(10):489–495

    Article  PubMed  Google Scholar 

  • Brass M, Zysset S, von Cramon DY (2001b) The inhibition of imitative response tendencies. Neuroimage 14(6):1416–1423

    Article  CAS  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13(2):400–404

    Article  PubMed  CAS  Google Scholar 

  • Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F et al (2004a) Neural circuits involved in the recognition of actions performed by nonconspecifics: an fMRI study. J Cogn Neurosci 16(1):114–126

    Article  Google Scholar 

  • Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ et al (2004b) Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 42(2):323–334

    Article  CAS  Google Scholar 

  • Casey BJ, Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Schubert AB et al (1997) Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 36(3):374–383

    Article  PubMed  CAS  Google Scholar 

  • Castiello U, Lusher D, Mari M, Edwards MG, Humphreys GW (2002) Observing a human or a robotic hand grasping an object: differential motor priming effects. In: Prinz W, Hommel B (eds) Attention and performance xix. Common mechanisms in perception and action. Oxford University Press, Oxford, pp. 315–333

    Google Scholar 

  • Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci 11:1839–1842

    Article  PubMed  CAS  Google Scholar 

  • Costantini M, Galati G, Ferretti A, Caulo M, Tartaro A, Romani GL et al (2005) Neural systems underlying observation of humanly impossible movements: a fMRI study. Cereb Cortex 15(11):1761–1767

    Article  PubMed  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both pet and fMRI. J Neurosci 18(18):7426–7435

    PubMed  CAS  Google Scholar 

  • de Zubicaray GI, Andrew C, Zelaya FO, Williams SC, Dumanoir C (2000) Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia 38(9):1280–1291

    Article  PubMed  Google Scholar 

  • Decety J, Chaminade T, Grezes J, Meltzoff AN (2002) A pet exploration of the neural mechanisms involved in reciprocal imitation. Neuroimage 15(1):265–272

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Grezes J, Costes N, Perani D, Jeannerod M, Procyk E et al (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(19):1763–1777

    Article  PubMed  Google Scholar 

  • Edwards MG, Humphreys GW, Castiello U (2003) Motor facilitation following action observation: a behavioural study in prehensile action. Brain Cogn 53(3):495–502

    Article  PubMed  Google Scholar 

  • Fadiga L, Craighero L, Olivier E (2005) Human motor cortex excitability during the perception of others’ action. Curr Opin Neurobiol 15(2):213–218

    Article  PubMed  CAS  Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73(6):2608–2611

    PubMed  CAS  Google Scholar 

  • Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333

    Article  PubMed  CAS  Google Scholar 

  • Farrer C, Frith CD (2002) Experiencing oneself versus another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15(3):596–603

    Article  PubMed  CAS  Google Scholar 

  • Gangitano M, Mottaghy FM, Pascual-Leone A (2001) Phase-specific modulation of cortical motor output during movement observation. Neuroreport 12(7):1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional mri study. Proc Natl Acad Sci USA 96(14), 8301–8306

    Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112:101–111

    Article  Google Scholar 

  • Grezes J, Costes N, Decety J (1998) Top-down effect of strategy on the perception of human biological motion: a pet investigation. Cogn Neuropsychol 15:553–582

    Article  Google Scholar 

  • Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95(25):15061–15065

    Google Scholar 

  • Heiser M, Iacoboni M, Maeda F, Marcus J, Maziotta JC (2003) The essential role of broca´s area in imitation. Eur J Neurosci 17:1123–1128

    Article  PubMed  Google Scholar 

  • Hommel B, Musseler J, Aschersleben G, Prinz W (2001) The theory of event coding (tec): a framework for perception and action planning. Behav Brain Sci 24(5), 849–878; discussion 878–937

    Google Scholar 

  • Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC et al (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98(24), 13995–13999

    Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286(5449):2526–2528

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Satoh K, Itoh H, Ono S, Furumoto S, Gotoh R et al (1996) Functional anatomy of go/no-go discrimination and response selection—a pet study in man. Brain Res 728(1):79–89

    PubMed  CAS  Google Scholar 

  • Kessler K, Biermann-Ruben K, Jonas M, Siebner HR, Bäumer T, Münchau A et al (2006) Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements. Neuroimage (in press)

  • Kessler K, Tipper SP (2004) Retrieval of implicit inhibitory processes: the impact of visual field, object-identity and memory dynamics. Vis Cogn 11(8)

  • Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Opin Biol 13(6):522–525

    CAS  Google Scholar 

  • Klein RM (2000) Inhibition of return. Trends Cogn Sci 4(4):138–147

    Article  PubMed  Google Scholar 

  • Koski L, Iacoboni M, Dubeau MC, Woods RP, Mazziotta JC (2003) Modulation of cortical activity during different imitative behaviors. J Neurophysiol 89(1):460–471

    Article  PubMed  Google Scholar 

  • Krams M, et al (1998) The preparation, execution and suppression of copied movements in the human brain. Exp Brain Res pp 386–398

  • Leube DT, Knoblich G, Erb M, Grodd W, Bartels M, Kircher TT (2003) The neural correlates of perceiving one’s own movements. Neuroimage 20(4):2084–2090

    Article  PubMed  Google Scholar 

  • Niemi P, Näätänen R (1981) Foreperiod and simple reaction time. Psychol Bull 89(1):133–162

    Article  Google Scholar 

  • Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci USA 97(2), 913–918

    Google Scholar 

  • Nobre AC (2001) Orienting attention to instants in time. Neuropsychologia 39(12):1317–1328

    Article  PubMed  CAS  Google Scholar 

  • Patuzzo S, Fiaschi A, Manganotti P (2003) Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia 41(9):1272–1278

    Article  PubMed  Google Scholar 

  • Pollmann S, Zaidel E (1999) Redundancy gains for visual search after complete commissurotomy. Neuropsychology 13(2):246–258

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H, Bouwhuis DG (eds) Attention and performance x. Control of visual processing. Erlbaum, Hillsdale, pp. 531–556

    Google Scholar 

  • Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9(2):129–154

    Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fadiga L, Fogassi L, Gallese V (1999) Resonance behaviors and mirror neurons. Archives Italiennes Biologie 137(2–3):85–100

    CAS  Google Scholar 

  • Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Perani D, Fazio F (1996) Localization of grasp representations in humans by pet. 1. Observation versus execution. Exp Brain Res 111(2):246–252

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670

    Article  PubMed  CAS  Google Scholar 

  • Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a pet investigation of agency. Nat Neurosci 4(5):546–550

    PubMed  CAS  Google Scholar 

  • Sakreida K, Schubotz RI, Wolfensteller U, von Cramon DY (2005) Motion class dependency in observers’ motor areas revealed by functional magnetic resonance imaging. J Neurosci 25(6):1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Stevens JA, Fonlupt P, Shiffrar M, Decety J (2000) New aspects of motion perception: selective neural encoding of apparent human movements. Neuroreport 11(1):109–115

    Article  PubMed  CAS  Google Scholar 

  • Strafella AP, Paus T (2000) Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport 11(10):2289–2293

    Article  PubMed  CAS  Google Scholar 

  • Stürmer B (1997) Organisationsprinzipien an der Schnittstelle zwischen Wahrnehmung und Handlung: Kompatibilitätseffekte unter Verwendung dynamischer Reiz- und Reaktionseigenschaften. Shaker-Verlag, Aachen

    Google Scholar 

  • Stürmer B, Aschersleben G, Prinz W (2000) Correspondence effects with manual gestures and postures: a study of imitation. J Exp Psychol: Human Percept Perform 26(6):1746–1759

    Article  Google Scholar 

  • Sundara M, Namasivayam AK, Chen R (2001) Observation-execution matching system for speech: a magnetic stimulation study. Neuroreport 12(7):1341–1344

    Article  PubMed  CAS  Google Scholar 

  • Tai YF, Scherfler C, Brooks DJ, Sawamoto N, Castiello U (2004) The human premotor cortex is ‘mirror’ only for biological actions. Curr Opini Biol 14(2):117–120

    Article  CAS  Google Scholar 

  • Tanaka S, Inui T (2002) Cortical involvement for action imitation of hand/arm postures versus finger configurations: an fMRI study. Neuroreport 13(13):1599–1602

    Article  PubMed  Google Scholar 

  • Tanaka S, Inui T, Iwaki S, Konishi J, Nakai T (2001) Neural substrates involved in imitating finger configurations: an fMRI study. Neuroreport 12(6):1171–1174

    Article  PubMed  CAS  Google Scholar 

  • Tipper SP, Driver J, Weaver B (1991) Object-centred inhibition of return of visual attention. Q J Exp Psychol A 43(2):289–298

    PubMed  CAS  Google Scholar 

  • Tipper SP, Jordan H, Weaver B (1999) Scene-based and object-centered inhibition of return: evidence for dual orienting mechanisms. Percept Psychophys 61(1):50–60

    PubMed  CAS  Google Scholar 

  • Vogt S, Taylor P, Hopkins B (2003) Visuomotor priming by pictures of hand postures: perspective matters. Neuropsychologia 41(8):941–951

    Article  PubMed  Google Scholar 

  • Wheaton KJ, Thompson JC, Syngeniotis A, Abbott DF, Puce A (2004) Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage 22(1):277–288

    Article  PubMed  Google Scholar 

  • Wohlschläger A, Gattis M, Bekkering H (2003) Action generation and action perception in imitation: an instance of the ideomotor principle. Philos Trans R Soc London, Series B: Biol Sci 358(1431):501–515

    Article  Google Scholar 

  • Wright RD, Richard CM (2000) Location cue validity affects inhibition of return of visual processing. Vision Res 40(17):2351–2358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Volkswagenstiftung (I / 78553) and the Bundesministerium für Bildung und Forschung (BMBF, grant 01 GO 0511). We would like to thank two anonymous reviewers for their helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jonas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonas, M., Biermann-Ruben, K., Kessler, K. et al. Observation of a finger or an object movement primes imitative responses differentially. Exp Brain Res 177, 255–265 (2007). https://doi.org/10.1007/s00221-006-0660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0660-y

Keywords

Navigation