Skip to main content
Log in

Electrical stimulation driving functional improvements and cortical changes in subjects with stroke

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It has been proposed that somatosensory stimulation in the form of electromyographically triggered neuromuscular electrical stimulation (NMES) to the peripheral nerve can influence functional measures of motor performance in subjects with stroke and can additionally produce changes in cortical excitability. Using a controlled, double-blind design, we studied the effects of intensive (60 h/3 weeks) treatment at home with NMES compared with a sham treatment, applied to the extensor muscles of the hemiplegic forearm to facilitate hand opening in 16 chronic stroke subjects. We investigated improvement in functional use of the hand and change in cortical activation as measured by functional magnetic resonance imaging (fMRI). Following treatment, subjects improved on measures of grasp and release of objects (Box and Block Test and Jebsen Taylor Hand Function Test [JTHFT]: small objects, stacking, heavy cans), isometric finger extension strength, and self-rated Motor Activity Log (MAL): Amount of Use and How Well score. The sham subjects did not improve on any grasp and release measure or self-rated scale, but did improve on isometric finger extension strength. Importantly, however, following crossover, these subjects improved further in the measure of strength, grasp and release (Box and Block [JTHFT]: page turning), and self-rated MAL: Amount of Use score and How Well score. Using fMRI and a finger-tracking task, an index of cortical intensity in the ipsilateral somatosensory cortex increased significantly from pre-test to post-test following treatment. Cortical activation, as measured by voxel count, did not change. These findings suggest that NMES may have an important role in stimulating cortical sensory areas allowing for improved motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abo M, Chen Z, Lai L, Reese T, Bjelke B (2001) Functional recovery after brain lesion-contralateral neuromodulation: an fMRI study. Neuroreport 12:1543–1547

    CAS  PubMed  Google Scholar 

  • Aizawa H, Inase M, Mushiake H, Shima K, Tanji J (1991) Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Exp Brain Res 84:668–671

    CAS  PubMed  Google Scholar 

  • American Heart Association (2000) Heart and Stroke Statistical Update. In: American Heart Association, Dallas

  • Aschersleben G, Gehrke J, Prinz W (2001) Tapping with peripheral nerve block, a role for tactile feedback in the timing of movements. Exp Brain Res 136:331–339

    Article  CAS  PubMed  Google Scholar 

  • Backes WH, Mess WH, van Kranen-Mastenbroek V, Reulen JPH (2000) Somatosensory cortex responses to median nerve stimulation: fMRI effect of current amplitude and selective attention. Clin Neurophysiol 111:1738–1744

    Article  CAS  PubMed  Google Scholar 

  • Backes WH, Mess WH, van Kranen-Mastenbroek V, Reulen JPH (2002) Somatosensory cortex responses to median nerve stimulation: fMRI effect of current amplitude and selective attention. Clin Neurophysiol 111:1738–1744

    Article  Google Scholar 

  • Brandstater M (1998) Stroke rehabilitation. In: Gans JDB (ed) Rehabilitation medicine: principles and practice, 3rd edn. Lippincott-Raven, Philadelphia, pp 1165–1190

  • Butefisch C, Davis B, Wise S, Sawaki L, Kopylev L, Classen J, Cohen LG (2000) Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci U S A 97:3661–3665

    CAS  PubMed  Google Scholar 

  • Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults—a review. Stroke 34:1553–1566

    Article  PubMed  Google Scholar 

  • Calautti C, Leroy G, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 32:2534–2542

    CAS  PubMed  Google Scholar 

  • Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KMA (1998) Pilot study of functional MRI to access cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112–122

    CAS  PubMed  Google Scholar 

  • Caramia MD, Iani C, Bernardi G (1996) Cerebral plasticity after stroke as revealed by ipsilateral responses to magnetic stimulation. Neuroreport 7:1756–1760

    CAS  PubMed  Google Scholar 

  • Carey J (1990) Manual stretch: effect on finger movement control and force control in subjects with stroke with spastic extrinsic finger flexor muscles. Arch Phys Med Rehabil 71:888–894

    CAS  PubMed  Google Scholar 

  • Carey J, Bogard C, King B, Suman V (1994) Finger-movement tracking scores in healthy subjects. Percept Mot Skills 79:563–576

    CAS  PubMed  Google Scholar 

  • Carey J, Baxter T, Di Fabio R (1998) Tracking control in the nonparetic hand of subjects with stroke. Arch Phys Med Rehabil 79:435–441

    CAS  PubMed  Google Scholar 

  • Carey JR, Kimberley TJ, Lewis SM, Auerbach E, Dorsey L, Rundquist P, Ugurbil K (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125:773–788

    Article  PubMed  Google Scholar 

  • Carey JR, Anderson KM, Kimberley TJ, Lewis SM, Auerbach EJ, Ugurbil K (2003) fMRI analysis of ankle movement tracking training in subject with stroke. Exp Brain Res (in press)

  • Carr LJ, Harrison LM, Stephens JA (1994) Evidence for bilateral innervation of certain homologous motorneuron pools in man. J Physiol 475:217–227

    CAS  PubMed  Google Scholar 

  • Cauraugh J, Light K, Kim S, Thigpen M, Behrman A (2000) Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 31:1360–1364

    CAS  PubMed  Google Scholar 

  • Chae J, Yu D (2000) A critical review of neuromuscular electrical stimulation for treatment of motor dysfunction in hemiplegia. Assistive Technology 12:33–49

    CAS  PubMed  Google Scholar 

  • Chae J, Bethoux F, Bohinc T, Dobos L, Davis T, Friedl A (1998) Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke 29:975–979

    CAS  PubMed  Google Scholar 

  • Cohen MS, DuBois RM (1999) Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Res Imaging 10:33–40

    Article  CAS  Google Scholar 

  • Cramer SC, Finklestein SP, Schaechter JD, Bush G, Rosen, BR (1999) Activation of distant motor cortex regions during ipsilateral and contralateral finger movements. J Neurophysiology 81:383–387

    CAS  Google Scholar 

  • de Kroon JR, van der Lee JH, Ijzerman MJ, Lankhorst GJ (2002) Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clinical Rehabilitation 16:350–360

    Article  PubMed  Google Scholar 

  • Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L (1994) Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil 75:751–755

    CAS  PubMed  Google Scholar 

  • Feys H, De Weerdt W, Selz B, Cox Steck G, Spichger R, Vereeck L, Putman D, Van Hoydonck G (1998) Effect of therapeutic intervention for the hemiplegic upper limb in the acutre phase of stroke. A single-blind, randomized, controlled multicenter trial. Stroke 29:785–792

    CAS  PubMed  Google Scholar 

  • Fields RW (1987) Electromyographically triggered electric muscle stimulation for chronic hemiplegia. Arch Phys Med Rehabil 68:407–414

    CAS  PubMed  Google Scholar 

  • Folstein M, Folstein S, McHugh P (1975) “Mini-mental state:” a practical method for grading the cognitive state of patients for the clinician. J Psychiat Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Francisco G, Chae J, Chawla H, Kirshblum S, Zorowitz R, Lewis G, Pang S (1998) Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil 79:570–575

    CAS  PubMed  Google Scholar 

  • Fraser C, Power M, Hobday D, Hollander I, Tyrell P, Hobson A, Williams S, Thompson D (2002) Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron 34:831–840

    CAS  PubMed  Google Scholar 

  • Friel K, Heddings A, Nudo RJ (2000) Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates. Neurorehabil Neural Repair 14:187–198

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Whang K, Georgopoulos MA, Tagaris GA, Amirikian B, Richter W, Kim SG, Ugurbil K (2001) Functional magnetic resonance imaging of visual object construction and shape discrimination: relations among task, hemispheric lateralization, and gender. J Cogn Neurosci 13:72–89

    Article  CAS  PubMed  Google Scholar 

  • Hamdy S, Rothwell J, Aziz Q, Singh K, Thompson D (1998) Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neuroscience 1:64–68

    Article  CAS  PubMed  Google Scholar 

  • Hummelsheim H, Maier-Loth M, Eickhof C (1997) The functional value of electrical muscle stimulation for the rehabilitation of the hand in stroke patients. Scand J Rehab Med 29:3-10

    CAS  Google Scholar 

  • Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA (1969) An objective and standardized test of hand function. Arch Phys Med Rehabil 50:311–319

    CAS  PubMed  Google Scholar 

  • Johansson B, Haker E, von Arbin M, Britton M, Langstrom G, Terent A, Ursing D, Asplund K (2000) Acupuncture and transcutaneous nerve stimulation in stroke rehabilitation. Stroke 32:707–713

    Google Scholar 

  • Jones TA, Schallert T (1994) Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci 14:2140–2152

    CAS  PubMed  Google Scholar 

  • Kaelin-Lang A, Luft A, Sawaki L, Burstein A, Sohn Y, Cohen LG (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol-London 540:623–633

    Google Scholar 

  • Kampe K, Jones R, Auer D (2000) Frequency dependence of the functional MRI response after electrical median nerve stimulation. Hum Brain Mapp 9:106–114

    Article  CAS  PubMed  Google Scholar 

  • Khaslavskaia S, Ladouceur M, Sinkjaer T (2002) Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res 145:309–315

    Article  PubMed  Google Scholar 

  • Kim SG, Hendrick K, Hu X, Merkle H, Ugurbil K (1994) Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR Biomed 7:69–74

    CAS  PubMed  Google Scholar 

  • Kleim JA, Vij K, Ballard DH, Greenough WT (1997) Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J Neurosci 17:717–721

    CAS  PubMed  Google Scholar 

  • Kraft GH, Fitts SS, Hammond MC (1992) Techniques to improve function of the arm and hand in chronic hemiplegia. Arch Phys Med Rehabil 73:220–227

    CAS  PubMed  Google Scholar 

  • Lewis SM, Jerde TA, Tzagarakis C, Tsekos N, Amirikian B, Georgopoulos MA, Kim S-G, Ugurbil K, Georgopoulos AP (2002) Logarithmic transformations for BOLD fMRI data. Society for Neuroscience Abstracts

  • Mathiowetz V, Volland G, Kashman N, Weber K (1985) Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther 39:386–391

    CAS  PubMed  Google Scholar 

  • McKay DR, Ridding MC, Thompson PD, Miles TS (2002) Induction of persistent changes in the organisation of the human motor cortex. Exp Brain Res 143:342–349

    Article  PubMed  Google Scholar 

  • Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E (1999) Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke 30:586–592

    CAS  PubMed  Google Scholar 

  • Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS (1994) Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil 75:852–857

    CAS  PubMed  Google Scholar 

  • Nelles G, Spiekermann G, Jueptner M, Leonhardt G, Muller S, Gerhard H, Diener HC (1999) Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study. Ann Neurol 46:901–909

    Article  CAS  PubMed  Google Scholar 

  • Nelles G, Jentzen W, Jueptner M, Muller S, Diener HC (2001) Arm training induced brain plasticity in stroke studied with serial positron Emission Tomography. NeuroImage 13:1146–1154

    Article  CAS  PubMed  Google Scholar 

  • Nudo R, Milliken G (1996) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophys 75:5:2144–2149

    Google Scholar 

  • Nudo R, Milliken G, Jenkins W, Merzenich M (1996a) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16(2): 785–807

    CAS  PubMed  Google Scholar 

  • Nudo R, Wise, Birukte M, SiFuentes, Milliken F, Garrett W (1996b) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–1794

    CAS  Google Scholar 

  • Nudo RJ, Plautz EJ, Frost S (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019

    Article  CAS  PubMed  Google Scholar 

  • Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme Medical Publishers, New York

  • Panizza M, Nilsson J, Roth BJ, Basser PJ, Hallett M (1992) Relevance of stimulus duration for activation of motor and sensory fibers; implications for the study of H-reflexes and magnetic stimulation. Electroenceph Clin Neurophysiol 85:22–29

    Article  CAS  PubMed  Google Scholar 

  • Plautz EJ, Milliken GW, Nudo RJ (2000) Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 74:27–55

    Article  CAS  PubMed  Google Scholar 

  • Powell J, Pandyan A, Granat M (1999) Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 30:1384–1389

    CAS  PubMed  Google Scholar 

  • Reding MJ, Potes E (1998) Rehabilitation outcome following initial unilateral hemispheric stroke. Life table analysis approach. Stroke 19:1354–1358

    Google Scholar 

  • Remple MS, Bruneau RM, VandenBerg PM, Goertzen C, Kleim JA (2001) Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res 123:133–141

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 112:1461–1469

    CAS  PubMed  Google Scholar 

  • Smith GV, Alon G, Roys SR, Gullapalli RP (2003) Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. ExpBrain Res 150: 33–39

    Google Scholar 

  • Sonde L, Gip C, Fernaeus S, Nilsson C, Viitanen M (1998) Stimulation with low frequency (1/7 Hz) transcutaneous electric nerve stimulation increases motor function of the post-stroke paretic arm. Scand J Rehab Med 30:95–99

    Article  CAS  Google Scholar 

  • Spiegel J, Tintera J, Gawehn J, Stoeter P, Treede R (1999) Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 110:47–52

    Article  CAS  PubMed  Google Scholar 

  • Stefen K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Strupp J (1996) Stimulate: a GUI based, fMRI analysis software package. NeuroImage 3:S607

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotoxic atlas of the human brain. Thieme, New York

  • Taub E, Miller NE, Novack TA, Cook EWI, Fleming WC, Nepomuceno CS (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74:347–354

    CAS  PubMed  Google Scholar 

  • Ugurbil K, Ogawa S, Kim SG, Chen W, Zhu XH (1999) Imaging brain activity using nuclear spins. In: Maraviglia B (ed) Magnetic resonance and brain function: approaches from physics. IOS Press, Amsterdam, pp 261–310

  • Vaughan JT, Adriany G, Garwood M, Andersen P, Ugurbil K (2001) The head cradle: an open faced, high performance TEM coil. In: Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, p 15

  • Waldvogel D, van Gelderen P, Immisch I, Pfeiffer C, Hallett M (2000) The variability of serial fMRI data: correlation between a visual and a motor task. Neuroreport 11:3843–3847

    CAS  PubMed  Google Scholar 

  • Weiller C, Ramsay SC, Wise RJS, Friston KJ, Frackowiak RSJ (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33:181–189

    CAS  PubMed  Google Scholar 

  • Xiong J, Gao J, Lancaster J, Fox P (1995) Clustered pixels analysis for functional MRI activation studies of the human brain. Hum Brain Mapp 3:287–301

    Google Scholar 

  • Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support for this work from the National Institute on Disability and Rehabilitation Research (US Department of Education #H133G010077) and the National Institutes of Health (National Centers for Research Resources P41RR08079 and M01RR00400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa J. Kimberley.

Additional information

This work was completed at the University of Minnesota, Minneapolis, MN 55455, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimberley, T.J., Lewis, S.M., Auerbach, E.J. et al. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res 154, 450–460 (2004). https://doi.org/10.1007/s00221-003-1695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1695-y

Keywords

Navigation