Skip to main content
Log in

Effect of an α1-adrenergic blocker on plasticity elicited by motor training

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recovery of motor function elicited by motor training after cortical lesions in rats is enhanced by norepinephrine (neurotransmitter mediating α1-adrenergic function) and downregulated by α1-adrenergic antagonists. In spite of this, α1-adrenergic antagonists are used to treat elderly patients with hypertension and prostate hyperplasia in stroke settings. The purpose of this study was to determine the effects of a single oral dose of the α1-adrenergic antagonist prazosin on training-dependent plasticity in intact humans, a function thought to contribute to recovery of motor function after cortical lesions. We report that prazosin decreased the ability of motor training to elicit training-dependent plasticity relative to a drug-free condition. These data suggest caution when using α1-adrenergic blockers in rehabilitative clinical settings following brain lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Akduman B, Crawford ED (2001) Terazosin, doxazosin, and prazosin: current clinical experience. Urology 58:49–54

    Article  CAS  PubMed  Google Scholar 

  • Butefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, Cohen LG (2000) Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci USA 97:3661–3665

    Article  CAS  PubMed  Google Scholar 

  • Butefisch CM, Davis BC, Sawaki L, Waldvogel D, Classen J, Kopylev L, Cohen LG (2002) Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 51:59–68

    Article  CAS  PubMed  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    CAS  PubMed  Google Scholar 

  • Ebbs D (2001) A comparison of selected antihypertensives and the use of conventional vs ambulatory blood pressure in the detection and treatment of hypertension. Cardiology 96:3–9

    Article  CAS  PubMed  Google Scholar 

  • Feeney DM, Westerberg VS (1990) Norepinephrine and brain damage: α noradrenergic pharmacology alters functional recovery after cortical trauma. Can J Psychol 44:233–252

    CAS  PubMed  Google Scholar 

  • Feeney DM, Weisend MP, Kline AE (1993) Noradrenergic pharmacotherapy, intracerebral infusion and adrenal transplantation promote functional recovery after cortical damage. J Neural Transplant Plast 4:199–213

    CAS  PubMed  Google Scholar 

  • Goldstein LB (2000) Effects of amphetamines and small related molecules on recovery after stroke in animals and man. Neuropharmacology 39:852–859

    Article  CAS  PubMed  Google Scholar 

  • Goldstein LB, Dromerick AW, Good DC, Lennihan L, McDowell F, Reding MJ, Plains W, Samsa GP (2002) Possible time window for the detrimental effects of drugs on poststroke recovery. American Academy of Neurology 54th Annual Meeting Program 58:A5–A6

    Google Scholar 

  • Hovda DA, Sutton RL, Feeney DM (1989) Amphetamine-induced recovery of visual cliff performance after bilateral visual cortex ablation in cats: measurements of depth perception thresholds. Behav Neurosci 103:574–584

    Article  CAS  PubMed  Google Scholar 

  • Ikegaya Y, Nakanishi K, Saito H, Abe K (1997) Amygdala β-adrenergic influence on hippocampal long-term potentiation in vivo. Neuroreport 8:3143–3146

    CAS  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol (Lond) 466:521–534

  • Izumi Y, Zorumski CF (1999) Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 31:196–202

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kobayashi T (2001) Genetic evidence for noradrenergic control of long-term memory consolidation. Brain Dev 23 [Suppl 1]:S16–S23

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519

  • Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105:340–344

    CAS  PubMed  Google Scholar 

  • Riva E, Latini R, Cremonesi A, Zaca F, Pagliarani P (1980) Time course of plasma levels and electrophysiologic effects of propranolol in man. J Cardiovasc Pharmacol 2:707–714

    CAS  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    CAS  PubMed  Google Scholar 

  • Sara SJ (1998) Learning by neurones: role of attention, reinforcement and behaviour. C R Acad Sci III 321:193–198

    Article  CAS  PubMed  Google Scholar 

  • Sawaki L, Boroojerdi B, Kaelin-Lang A, Burstein AH, Butefisch CM, Kopylev L, Davis B, Cohen LG (2002) Cholinergic influences on use-dependent plasticity. J Neurophysiol 87:166–171

    CAS  PubMed  Google Scholar 

  • Vincent J, Meredith PA, Reid JL, Elliott HL, Rubin PC (1985) Clinical pharmacokinetics of prazosin — 1985. Clin Pharmacokinet 10:144–154

    CAS  PubMed  Google Scholar 

  • Walker-Batson D, Curtis S, Natarajan R, Ford J, Dronkers N, Salmeron E, Lai J, Unwin DH (2001) A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 32:2093–2098

    CAS  PubMed  Google Scholar 

  • Werhahn KJ, Fong JK, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93:138–146

    CAS  PubMed  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding M (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 496:873–881

Download references

Acknowledgements

We wish to thank our subjects for their participation in the study, and M. Hallett for critical comments. We also gratefully acknowledge A.H. Burstein, R.Villadiego and N. Dang for invaluable technical support and D.G. Schoenberg for skillful editing. This work was partially supported by a grant from the Office of Alternative Medicine, National Institutes of Health, USA (OAM-NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawaki, L., Werhahn, K.J., Barco, R. et al. Effect of an α1-adrenergic blocker on plasticity elicited by motor training. Exp Brain Res 148, 504–508 (2003). https://doi.org/10.1007/s00221-002-1328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-002-1328-x

Keywords

Navigation