Skip to main content
Log in

Condensation of Non-reversible Zero-Range Processes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we investigate the condensation phenomena for a class of non-reversible zero-range processes on a fixed finite set. By establishing a novel inequality bounding the capacity between two sets, and by developing a robust framework to perform quantitative analysis on the metastability of non-reversible processes, we prove that the condensed site of the corresponding zero-range processes approximately behaves as a Markov chain on the underlying graph whose jump rate is proportional to the capacity with respect to the underlying random walk. The results presented in the current paper complete the generalization of the work of Beltran and Landim (Probab Theory Relat Fields 152:781–807,2012) on reversible zero-range processes, and that of Landim (Commun Math Phys 330:1–32,2014) on totally asymmetric zero-range processes on a one-dimensional discrete torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Armendáriz I., Grosskinsky S., Loulakis M.: Metastability in a condensing zero-range process in the thermodynamic limit. Probab. Theory Relat. Fields169, 105–175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beltrán J., Landim C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys.140, 1065–1114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltrán J., Landim C.: Tunneling and metastability of continuous time Markov chains II. J. Stat. Phys.149, 598–618 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Beltrán J., Landim C.: Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Relat. Fields152, 781–807 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berglund N., Gentz B.: Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond. Electron. J. Probab.18, 1–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchi A., Bovier A., Ioffe D.: Sharp asymptotics for metastability in the random field Curie–Weiss model. Electron. J. Probab.14, 1541–1603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianchi A., Dommers S., Giardinà à C.: Metastability in the reversible inclusion process. Electron. J. Probab.22, 1–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bovier A., Eckhoff M., Gayrard V., Klein M.: Metastability in stochastic dynamics of disordered mean-field models. Probab. Theory Relat. Fields119, 99–161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bovier A., Eckhoff M., Gayrard V., Klein M.: Metastability in reversible diffusion process I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc.6, 399–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bovier, A., den Hollander, F.: Metastability: A Potential-Theoretic Approach. Grundlehren der mathematischen Wissenschaften, vol. 351. Springer, Berlin (2015)

  11. Bovier A., Manzo F.: Metastability in Glauber dynamics in the low-temperature limit: beyond exponential asymptotics. J. Stat. Phys.107, 757–779 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cassandro M., Galves A., Olivieri E., Vares M.E.: Metastable behavior of stochastic dynamics: a pathwise approach. J. Stat. Phys.35, 603–634 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Evans M.R., Hanney T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A38, 195–240 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Freidlin, M.I., Wentzell, A.D.: Random perturbations. In: Random Perturbations of Dynamical Systems. Grundlehren der mathematischen Wissenschaften, vol. 260. Springer, New York (1998)

  15. Gaudillière A., Landim C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Relat. Fields158, 55–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Godrèche C., Luck J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A38, 7215–7237 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Grosskinsky S., Redig F., Vafayi K.: Condensation in the inclusion process and related models. J. Stat. Phys.142, 952–974 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Grosskinsky S., Redig F., Vafayi K.: Dynamics of condensation in the symmetric inclusion process. Electron. J. Probab.18, 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grosskinsky S., Schütz G.M., Spohn H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys.113, 389–410 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeon I., March P., Pittel B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab.28, 1162–1194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Landim C.: A topology for limits of Markov chains. Stoch. Proc. Appl.125, 1058–1098 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Landim C.: Metastability for a non-reversible dynamics: the evolution of the condensate in totally asymmetric zero range processes. Commun. Math. Phys.330, 1–32 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Landim C., Lemire P.: Metastability of the two-dimensional Blume–Capel model with zero chemical potential and small magnetic field. J. Stat. Phys.164, 346–376 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Landim, C., Loulakis, M., Mourragui, M.: Metastable Markov chains.arXiv:1703.09481 (2017)

  25. Landim, C., Mariani, M., Seo, I.: Dirichlet’s and Thomson’s principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes. Arch. Rational Mech. Anal. 231, 887–938 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Landim C., Misturini R., Tsunoda K.: Metastability of reversible random walks in potential field. J. Stat. Phys.160, 1449–1482 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Landim C., Seo I.: Metastability of non-reversible random walks in a potential field, the Eyring-Kramers transition rate formula. Commun. Pure Appl. Math.71, 203–266 (2018)

    Article  MATH  Google Scholar 

  28. Landim C., Seo I.: Metastability of non-reversible mean-field Potts model with three spins. J. Stat. Phys.165, 693–726 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Nardi, F.R., Zocca, A.: Tunneling behavior of Ising and Potts models in the low-temperature regime.arXiv:1708.09677 (2017)

  30. Olivieri, E., Vares, M.E.: Large deviations and metastability. Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005)

  31. Slowik, M.: A note on variational representations of capacities for reversible and nonreversible Markov chains. Unpublished, Technische Universität Berlin (2012)

Download references

Acknowledgements

I. Seo was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. 2018R1C1B6006896 and 2017R1A5A1015626). I. Seo wishes to thank Claudio Landim, and Fraydoun Rezakhanlou for providing valuable ideas through numerous discussions. Part of this work was done during the author’s stay at the IMPA for the conference “XXI Escola Brasileira de Probabilidade”. The author thanks IMPA for the hospitality and support for this visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insuk Seo.

Additional information

Communicated by H. Spohn

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, I. Condensation of Non-reversible Zero-Range Processes. Commun. Math. Phys. 366, 781–839 (2019). https://doi.org/10.1007/s00220-019-03346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03346-2

Navigation