Skip to main content
Log in

Critical Exponents for Long-Range \({O(n)}\) Models Below the Upper Critical Dimension

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the critical behaviour of long-range \({O(n)}\) models (\({n \ge 0}\)) on \({\mathbb{Z}^d}\), with interaction that decays with distance r as \({r^{-(d+\alpha)}}\), for \({\alpha \in (0,2)}\). For \({n \ge 1}\), we study the n-component \({|\varphi|^4}\) lattice spin model. For \({n =0}\), we study the weakly self-avoiding walk via an exact representation as a supersymmetric spin model. These models have upper critical dimension \({d_c=2\alpha}\). For dimensions \({d=1,2,3}\) and small \({\epsilon > 0}\), we choose \({\alpha = \frac 12 (d+\epsilon)}\), so that \({d=d_c-\epsilon}\) is below the upper critical dimension. For small \({\epsilon}\) and weak coupling, to order \({\epsilon}\) we prove the existence of and compute the values of the critical exponent \({\gamma}\) for the susceptibility (for \({n \ge 0}\)) and the critical exponent \({\alpha_H}\) for the specific heat (for \({n \ge 1}\)). For the susceptibility, \({\gamma = 1 + \frac{n+2}{n+8} \frac \epsilon\alpha + O(\epsilon^2)}\), and a similar result is proved for the specific heat. Expansion in \({\epsilon}\) for such long-range models was first carried out in the physics literature in 1972. Our proof adapts and applies a rigorous renormalisation group method developed in previous papers with Bauerschmidt and Brydges for the nearest-neighbour models in the critical dimension \({d=4}\), and is based on the construction of a non-Gaussian renormalisation group fixed point. Some aspects of the method simplify below the upper critical dimension, while some require different treatment, and new ideas and techniques with potential future application are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdesselam A.: A complete renormalization group trajectory between two fixed points. Commun. Math. Phys. 276, 727–772 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Abdesselam, A.: Towards three-dimensional conformal probability. arXiv:1511.03180

  3. Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions. arXiv:1302.5971

  4. Adams, S., Kotecký, R., Müller, S.: Strict convexity of the surface tension for non-convex potentials. arXiv:1606.09541

  5. Aizenman M.: Geometric analysis of \({\varphi^4}\) fields and Ising models, parts I and II. Commun. Math. Phys. 86, 1–48 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Aizenman M., Fernández R.: Critical exponents for long-range interactions. Lett. Math. Phys. 16, 39–49 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Amit D.J.: Field Theory, the Renormalization Group, and Critical Phenomena, 2nd edn. World Scientific, Singapore (1984)

    Google Scholar 

  8. Balaban T.: A low temperature expansion and “spin wave picture” for classical N-vector models. In: Rivasseau, V. (ed.) Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics. Springer Lecture Notes in Physics, vol. 446, Springer, Berlin (1995)

    Google Scholar 

  9. Balaban T., Feldman J., Knörrer H., Trubowitz E.: Complex Bosonic many-body models: overview of the small field parabolic flow. Ann. Henri Poincaré 18, 2873–2903 (2017)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Balaban T., O’Carroll M.: Low temperature properties for correlation functions in classical N-vector spin models. Commun. Math. Phys. 199, 493–520 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bauerschmidt R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bauerschmidt, R., Brydges, D.C., Slade, G.: Introduction to a renormalisation group method for critical phenomena. https://www.math.ubc.ca/~slade/brief-frd.pdf (in preparation)

  13. Bauerschmidt R., Brydges D.C., Slade G.: Scaling limits and critical behaviour of the 4-dimensional n-component \({|\varphi|^4}\) spin model. J. Stat. Phys. 157, 692–742 (2014)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Bauerschmidt R., Brydges D.C., Slade G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. 338, 169–193 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Bauerschmidt R., Brydges D.C., Slade G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. 337, 817–877 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Bauerschmidt R., Brydges D.C., Slade G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys. 159, 492–529 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Bauerschmidt R., Brydges D.C., Slade G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. Ann. Henri Poincaré 16, 1033–1065 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Bauerschmidt R., Slade G., Tomberg A., Wallace B.C.: Finite-order correlation length for 4-dimensional weakly self-avoiding walk and \({|\varphi|^4}\) spins. Ann. Henri Poincaré 18, 375–402 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Behan C., Rastelli L., Rychkov S., Zan B.: A scaling theory for long-range to short-range crossover and an infrared duality. J. Phys. A Math. Theor. 50, 354002 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bendikov A., Cygan W.: \({\alpha}\)-stable random walk has massive thorns. Colloq. Math. 138, 105–129 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bendikov, A., Cygan, W., Trojan, B.: Limit theorems for random walks. Stoch. Proc. Appl. 127, 3268–3290 (2017)

  22. Blumenthal R.M., Getoor R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95, 263–273 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  23. Brezin E., Parisi G., Ricci-Tersenghi F.: The crossover region between long-range and short-range interactions for the critical exponents. J. Stat. Phys. 157, 855–868 (2014)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Brydges D., Dimock J., Hurd T.R.: A non-Gaussian fixed point for \({\phi^4}\) in \({4-\epsilon}\) dimensions. Commun. Math. Phys. 198, 111–156 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Brydges D., Evans S.N., Imbrie J.Z.: Self-avoiding walk on a hierarchical lattice in four dimensions. Ann. Probab. 20, 82–124 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Brydges D., Mitter P.K.: On the convergence to the continuum of finite range lattice covariances. J. Stat. Phys. 147, 716–727 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Brydges D.C.: Lectures on the renormalisation group. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics. IAS/Park City Mathematics Series, vol. 16, pp. 7–93. American Mathematical Society, Providence (2009)

    Google Scholar 

  28. Brydges D.C., Guadagni G., Mitter P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Brydges D.C., Imbrie J.Z.: End-to-end distance from the Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 523–547 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Brydges D.C., Imbrie J.Z.: Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 549–584 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Brydges D.C., Imbrie J.Z., Slade G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Brydges D.C., Mitter P.K., Scoppola B.: Critical \({({\Phi}^4)_{3,\epsilon}}\). Commun. Math. Phys. 240, 281–327 (2003)

    Article  ADS  MATH  Google Scholar 

  33. Brydges D.C., Muñoz Maya I.: An application of Berezin integration to large deviations. J. Theor. Probab. 4, 371–389 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Brydges D.C., Slade G.: A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys. 159, 421–460 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Brydges D.C., Slade G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. 159, 461–491 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Brydges D.C., Slade G.: A renormalisation group method. IV. Stability analysis. J. Stat. Phys. 159, 530–588 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Brydges D.C., Slade G.: A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. 159, 589–667 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Brydges D.C., Spencer T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Chen L.-C., Sakai A.: Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Relat. Fields 142, 151–188 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Chen L.-C., Sakai A.: Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation. Ann. Probab. 39, 507–548 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Chen L.-C., Sakai A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43, 639–681 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  42. Collet P., Eckmann J.-P.: A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics. Lecture Notes in Physics, vol. 74. Springer, Berlin (1978)

    Google Scholar 

  43. Falco, P.: Critical exponents of the two dimensional Coulomb gas at the Berezinskii–Kosterlitz–Thouless transition. arXiv:1311.2237

  44. Feldman J., Magnen J., Rivasseau V., Sénéor R.: Construction and Borel summability of infrared \({\Phi^4_4}\) by a phase space expansion. Commun. Math. Phys. 109, 437–480 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. Fernández R., Fröhlich J., Sokal A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  46. Fisher M.E., Ma S., Nickel B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917–920 (1972)

    Article  ADS  Google Scholar 

  47. Fröhlich J.: On the triviality of \({\varphi_d^4}\) theories and the approach to the critical point in \({d \geq 4}\) dimensions. Nucl. Phys. B 200([FS4]), 281–296 (1982)

    Article  ADS  Google Scholar 

  48. Gawȩdzki K., Kupiainen A.: Non-Gaussian fixed points of the block spin transformation. Hierarchical model approximation. Commun. Math. Phys. 89, 191–220 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Gawȩdzki K., Kupiainen A.: Non-Gaussian scaling limits: Hierarchical model approximation. J. Stat. Phys. 35, 267–284 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Gawȩdzki K., Kupiainen A.: Massless lattice \({\varphi^4_4}\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 199–252 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  51. Gawȩdzki K., Kupiainen A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds) Critical Phenomena, Random Systems, Gauge Theories, North-Holland, Amsterdam (1986)

    Google Scholar 

  52. Giuliani A., Mastropietro V., Toninelli F.L.: Height fluctuations in interacting dimers. Ann. I. Henri Poincaré Probab. Stat. 53, 98–168 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Glimm J., Jaffe A.: Quantum Physics, A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  54. Grigor’yan A., Telcs A.: Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324, 521–556 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  55. Guida R., Zinn-Justin J.: Critical exponents of the N-vector model. J. Phys. A Math. Gen. 31, 8103–8121 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Hairer, M.: Regularity structures and the dynamical \({{\Phi}^4_3}\) model. arXiv:1508.05261

  57. Hara T.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^4}\) spin systems. I. Trajectory of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  58. Hara T., Hattori T., Watanabe H.: Triviality of hierarchical Ising model in four dimensions. Commun. Math. Phys. 220, 13–40 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Hara T., Slade G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys. 147, 101–136 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Hara T., Tasaki H.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^4}\) spin systems. II. Critical behaviour of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1987)

    Article  ADS  Google Scholar 

  61. Heydenreich M.: Long-range self-avoiding walk converges to alpha-stable processes. Ann. I. Henri Poincaré Probab. Stat. 47, 20–42 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Heydenreich M., van der Hofstad R., Sakai A.: Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132, 1001–1049 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Honkonen J., Yu M. Nalimov: Crossover between field theories with short-range and long-range exchange or correlations. J. Phys. A Math. Gen. 22, 751–763 (1989)

    Article  ADS  Google Scholar 

  64. Iagolnitzer D., Magnen J.: Polymers in a weak random potential in dimension four: rigorous renormalization group analysis. Commun. Math. Phys. 162, 85–121 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. Kato T.: Note on fractional powers of linear operators. Proc. Jpn. Acad. 36, 94–96 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  66. Kompaniets M.V., Panzer E.: Minimally subtracted six loop renormalization of \({{O}(n)}\)-symmetric \({\phi^4}\) theory and critical exponents. Phys.Rev. D 96, 036016 (2017)

    Article  ADS  Google Scholar 

  67. Kupiainen A.: Renormalization group and stochastic PDE’s. Ann. Henri Poincaré 17, 497–535 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Lawler G.F.: Intersections of Random Walks. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  69. Le Guillou J.C., Zinn-Justin J.: Accurate critical exponents from the \({\varepsilon}\)-expansion. J. Phys. Lett. 46, L137–L141 (1985)

    Article  Google Scholar 

  70. Lodhia A., Sheffield S., Sun X., Watson S.S.: Fractional Gaussian fields: a survey. Probab. Surv. 13, 1–56 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  71. Lohmann, M., Slade, G., Wallace, B.C.: Critical two-point function for long-range \({O(n)}\) models below the upper critical dimension. J. Stat. Phys. arXiv:1705.08540 (in press)

  72. Loomis L.H., Sternberg S.: Advanced Calculus. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  73. Luttinger J.M.: The asymptotic evaluation of a class of path integrals. II. J. Math. Phys. 24, 2070–2073 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  74. Madras N., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  75. McKane A.J.: Reformulation of \({n \to 0}\) models using anticommuting scalar fields. Phys. Lett. A 76, 22–24 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  76. Mitter, P.: Long range ferromagnets: renormalization group analysis. https://hal.archives-ouvertes.fr/cel-01239463 (2013)

  77. Mitter, P.K.: On a finite range decomposition of the resolvent of a fractional power of the Laplacian. J. Stat. Phys. 163, 1235–1246 (2016). Erratum: J. Stat. Phys. 166, 453–455 (2017)

  78. Mitter P.K.: On a finite range decomposition of the resolvent of a fractional power of the Laplacian II. The torus. J. Stat. Phys. 168, 986–999 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  79. Mitter P.K., Scoppola B.: The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({{{\mathbb Z}}^3}\). J. Stat. Phys. 133, 921–1011 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  80. Norris J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  81. Parisi G., Sourlas N.: Self-avoiding walk and supersymmetry. J. Phys. Lett. 41, L403–L406 (1980)

    Article  Google Scholar 

  82. Paulos M.F., Rychkov S., van Rees B.C., Zan B.: Conformal invariance in the long-range Ising model. Nucl. Phys. B 902, 246–291 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  83. Sak J.: Recursion relations and fixed points for ferromagnets with long-range interactions. Phys. Rev. B 8, 281–285 (1973)

    Article  ADS  Google Scholar 

  84. Sakai A.: Application of the lace expansion to the \({\varphi^4}\) model. Commun. Math. Phys. 336, 619–648 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. Schilling R.L., Song R., Vondracek Z.: Bernstein Functions. Theory and Applications. De Gruyter, Berlin (2012)

    MATH  Google Scholar 

  86. Slade G., Tomberg A.: Critical correlation functions for the 4-dimensional weakly self-avoiding walk and n-component \({|\varphi|^4}\) model. Commun. Math. Phys. 342, 675–737 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  87. Sokal A.D.: A rigorous inequality for the specific heat of an Ising or \({\varphi^4}\) ferromagnet. Phys. Lett. 71, 451–453 (1979)

    Article  MathSciNet  Google Scholar 

  88. Suzuki M., Yamazaki Y., Igarashi G.: Wilson-type expansions of critical exponents for long-range interactions. Phys. Lett. 42, 313–314 (1972)

    Article  Google Scholar 

  89. Wilson K.G., Fisher M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240–243 (1972)

    Article  ADS  Google Scholar 

  90. Yosida K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Slade.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slade, G. Critical Exponents for Long-Range \({O(n)}\) Models Below the Upper Critical Dimension. Commun. Math. Phys. 358, 343–436 (2018). https://doi.org/10.1007/s00220-017-3024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3024-5

Navigation