Skip to main content
Log in

Exponential Decay of Loop Lengths in the Loop O(n) Model with Large n

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The loop O(n) model is a model for a random collection of non-intersecting loops on the hexagonal lattice, which is believed to be in the same universality class as the spin O(n) model. It has been conjectured that both the spin and the loop O(n) models exhibit exponential decay of correlations when \(n > 2\). We verify this for the loop O(n) model with large parameter n, showing that long loops are exponentially unlikely to occur, uniformly in the edge weight x. Our proof provides further detail on the structure of typical configurations in this regime. Putting appropriate boundary conditions, when nx 6 is sufficiently small, the model is in a dilute, disordered phase in which each vertex is unlikely to be surrounded by any loops, whereas when nx 6 is sufficiently large, the model is in a dense, ordered phase which is a small perturbation of one of the three ground states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizenman M.: Translation invariance and instability of phase coexistence in the two-dimensional Ising system. Commun. Math. Phys. 73(1), 83–94 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baxter R.J.: Hard hexagons: exact solution. J. Phys. A 13(3), L61–L70 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1989), Reprint of the 1982 original (1989)

  4. Beffara V., Duminil-Copin H.: The self-dual point of the two-dimensional random-cluster model is critical for \({q \geq 1}\). Probab. Theory Rel. Fields 153(3–4), 511–542 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollobás, B.: The Art of Mathematics. Cambridge University Press, New York (2006), Coffee time in Memphis

  6. Chelkak D., Duminil-Copin H., Hongler C., Kemppainen A., Smirnov S.: Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris 352(2), 157–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Coquille L., Duminil-Copin H., Ioffe D., Velenik Y.: On the Gibbs states of the noncritical Potts model on \({\mathbb{Z}^2}\). Probab. Theory Rel. Fields 158, 477–512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Domany E., Mukamel D., Nienhuis B., Schwimmer A.: Duality relations and equivalences for models with O(n) and cubic symmetry. Nucl. Phys. B 190(2), 279–287 (1981)

    Article  ADS  Google Scholar 

  10. Domb C., Green M.S.: Phase Transitions and Critical Phenomena, Vol. 3. Academic New-York Press, New York (1976)

    Google Scholar 

  11. Duminil-Copin, H. (2013) Parafermionic Observables and Their Applications to Planar Statistical Physics Models, Ensaios Matematicos, vol. 25. Brazilian Mathematical Society

  12. Duminil-Copin, H.: Geometric representations of lattice spin models, Spartacus Graduate, Cours Peccot, Collège de France (2015)

  13. Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. In: Probability and Statistical Physics in Two and More Dimensions, Clay Math. Proc., vol. 15, Amer. Math. Soc., Providence, pp. 213–276 (2012)

  14. Duminil-Copin H., Smirnov S.: The connective constant of the honeycomb lattice equals \({\sqrt{2+\sqrt{2}}}\). Ann. Math. (2) 175(3), 1653–1665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fröhlich J., Spencer T.: The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81(4), 527–602 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Grimmett G.R.: The Random-Cluster Model, vol. 333. Springer, Berlin (2006)

    Book  Google Scholar 

  17. Heller G., Kramers H.A.: Ein Klassisches Modell des Ferromagnetikums und seine nachträgliche Quantisierung im Gebiete tiefer Temperaturen. Ver. K. Ned. Akad. Wetensc.(Amsterdam) 37, 378–385 (1934)

    MATH  Google Scholar 

  18. Higuchi, Y.: On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model, Random fields, Vol. I, II (Esztergom, 1979), Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam, pp. 517–534 (1981)

  19. Kenyon, R.: An introduction to the dimer model. In: School and Conference on Probability Theory, ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, pp. 267–304 (electronic) (2004)

  20. Kenyon R.: Conformal invariance of loops in the double-dimer model. Commun. Math. Phys. 326(2), 477–497 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kim D., Joseph R.I.: Exact transition temperature of the potts model with q states per site for the triangular and honeycomb lattices. J. Phys. C Solid State Phys. 7(8), L167 (1974)

    Article  ADS  Google Scholar 

  22. Kosterlitz J.M., Thouless D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6(7), 1181–1203 (1973)

    Article  ADS  Google Scholar 

  23. Kotecký R., Shlosman S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys. 83(4), 493–515 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kupiainen A.J.: On the 1/n expansion. Commun. Math. Phys. 73(3), 273–294 (1980)

    Article  ADS  Google Scholar 

  25. Laanait L., Messager A., Miracle-Solé S., Ruiz J., Shlosman S.: Interfaces in the Potts model. I. Pirogov–Sinai theory of the Fortuin–Kasteleyn representation. Commun. Math. Phys. 140(1), 81–91 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Lenz W.: Beitrag zum Verständnis der magnetischen Eigenschaften in festen K örpern. Phys. Zeitschr. 21, 613–615 (1920)

    Google Scholar 

  27. McBryan O.A., Spencer T.: On the decay of correlations in SO(n)-symmetric ferromagnets. Commun. Math. Phys. 53(3), 299–302 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  28. Mermin N.D., Wagner H.: Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    Article  ADS  Google Scholar 

  29. Nienhuis B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49(15), 1062–1065 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  30. Nienhuis B.: Locus of the tricritical transition in a two-dimensional q-state potts model. Phys. A Stat. Mech. Appl. 177(1–3), 109–113 (1991)

    Article  MathSciNet  Google Scholar 

  31. Palmer J.: Planar Ising correlations, Progress in Math. Physics, vol. 49. Birkhäuser Boston Inc., Boston (2007)

    Google Scholar 

  32. Peierls R.: On Ising’s model of ferromagnetism. Math. Proc. Camb. Phil. Soc. 32, 477–481 (1936)

    Article  ADS  MATH  Google Scholar 

  33. Polyakov A.: Interaction of goldstone particles in two dimensions. Applications to ferromagnets and massive Yang–Mills fields. Phys. Lett. B 59(1), 79–81 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  34. Stanley H.E.: Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20(12), 589–592 (1968)

    Article  ADS  Google Scholar 

  35. Thouless DJ.: Long-range order in one-dimensional Ising systems. Phys. Rev. 187, 732–733 (1969)

    Article  ADS  Google Scholar 

  36. Vaks V.G., Larkin A.I.: On phase transitions of second order. Soviet J. Exp. Theor. Phys. 22, 678 (1966)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinon Spinka.

Additional information

Communicated by F. Toninelli

Research of H.D.-C. is supported by Swiss FNS, the ERC AG COMPASP and the NCCR SwissMap.

Research of R.P. and Y.S. is partially supported by an ISF grant and an IRG grant.

Research of W.S. is partially supported by an ISF grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duminil-Copin, H., Peled, R., Samotij, W. et al. Exponential Decay of Loop Lengths in the Loop O(n) Model with Large n . Commun. Math. Phys. 349, 777–817 (2017). https://doi.org/10.1007/s00220-016-2815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2815-4

Navigation