Skip to main content
Log in

The Dirac Equation in Two Dimensions: Dispersive Estimates and Classification of Threshold Obstructions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate dispersive estimates for the two dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies a t −1 decay rate as an operator from the Hardy space H 1 to BMO, the space of functions of bounded mean oscillation. This estimate, along with the L 2 conservation law allows one to deduce a family of Strichartz estimates. We classify the structure of threshold obstructions as being composed of s-wave resonances, p-wave resonances and eigenfunctions. We show that, as in the case of the Schrödinger evolution, the presence of a threshold s-wave resonance does not destroy the t −1 decay rate. As a consequence of our analysis we obtain a limiting absorption principle in the neighborhood of the threshold, and show that there are only finitely many eigenvalues in the spectral gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964)

  2. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)

    MathSciNet  MATH  Google Scholar 

  3. Arai M., Yamada O.: Essential selfadjointness and invariance of the essential spectrum for Dirac operators. Publ. Res. Inst. Math. Sci. 18(3), 973–985 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beceanu M.: Decay estimates for the wave equation in two dimensions. J. Diff. Equ. 260(6), 5378–5420 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bejenaru I., Herr S.: The cubic Dirac equation: small initial data in \({H^{1/2}(\mathbb{R}^2)}\). Commun. Math. Phys. 343, 515–562 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett C., Sharpley R.: Interpolation of operators. Pure and applied mathematics, 129. Academic Press, Inc., Boston (1988)

    MATH  Google Scholar 

  7. Berthier A., Georgescu V.: On the point spectrum of Dirac operators. J. Funct. Anal. 71(2), 309–338 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollé D., Danneels C., Gesztesy F.: Threshold scattering in two dimensions. Ann. Inst. H. Poincaré Phys. Théor. 48(2), 175–204 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Boussaid N.: Stable directions for small nonlinear Dirac standing waves. Comm. Math. Phys. 268(3), 757–817 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Boussaid N., D’Ancona P., Fanelli L.: Virial identiy and weak dispersion for the magnetic Dirac equation. J. Math. Pures Appl 95, 137–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boussaid N., Golenia S.: Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies. Comm. Math. Phys. 299(3), 677–708 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cacciafesta F.: Virial identity and dispersive estimates for the n-dimensional Dirac equation. J. Math. Sci. Univ. Tokyo 18, 1–23 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Cacciafesta F., Seré E.: Local smoothing estimates for the massless Dirac equation in 2 and 3 dimensions. J. Func. Anal. 271(8), 2339–2358 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cojuhari P.A.: On the finiteness of the discrete spectrum of the Dirac operator. Rep. Math. Phys. 57(3), 333–341 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cojuhari, P. A.: Finiteness of eigenvalues of the perturbed Dirac operator. Operator theory, analysis and mathematical physics, 1-7, Oper. Theory Adv. Appl., 174, Birkhauser, Basel, (2007)

  16. Comech, A., Phan, T., Stefanov, A.: Asymptotic stability of solitary waves in generalized Gross-Neveu model. To appear in Ann. Inst. H. Poincaré Anal. Non Linéaire

  17. D’Ancona P., Fanelli L.: Lp-boundedness of the wave operator for the one dimensional Schrödinger operator. Comm. Math. Phys. 268(2), 415–438 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D’Ancona P., Fanelli L.: Decay estimates for the wave and Dirac equations with a magnetic potential. Comm. Pure Appl. Math. 60(3), 357–392 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding Y., Lu S.: Homogeneous fractional integrals on Hardy spaces. Tohoku Math. J. (2) 52(1), 153–162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erdoğan M.B., Goldberg M., Schlag W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Erdoğan M.B., Green W.R.: Dispersive estimates for the Schrodinger equation for \({C^{\frac{n-3}{2}}}\) potentials in odd dimensions. Int. Math. Res. Not. 13, 2532–2565 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Erdoğan M.B., Green W.R.: Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy. Trans. Am. Math. Soc. 365, 6403–6440 (2013)

    Article  MATH  Google Scholar 

  23. Erdoğan M.B., Green W.R.: A weighted dispersive estimate for Schrödinger operators in dimension two. Commun. Math. Phys. 319, 791–811 (2013)

    Article  ADS  MATH  Google Scholar 

  24. Erdoğan M.B., Green W.R.: Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete Contin. Dyn. Syst. 33(10), 4473–4495 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Erdoğan, M.B., Green, W.R., Toprak, E.: Dispersive estimates for Dirac operators in dimension three with obstructions at threshold energies. Submitted 2016, p. 36. arXiv:1609.05164

  26. Escobedo M., Vega L.: A semilinear Dirac equation in \({H^{s}(\mathbb{R}^3)}\) for s > 1. SIAM J. Math. Anal. 28(2), 338–362 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Georgescu V., Mantoiu M.: On the spectral theory of singular Dirac type Hamiltonians. J. Oper. Theory 46(2), 289–321 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Ginibre J., Velo G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 50–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Green W.: Time decay estimates for the wave equation with potential in dimension two. J. Diff. Equ. 257(3), 868–919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hanks, R.: nterpolation by the real method between BMO, \({L^\alpha(0<\alpha<\infty)}\) and \({H^\alpha(0<\alpha<\infty)}\). Indiana Univ. Math. J. 26(4), 679–689 (1977)

  32. Hunziker W, Sigal I.M., Soffer A.: Minimal escape velocities. Comm. Partial Differ. Equ. 24(11-12), 2279–2295

  33. Jensen A.: Spectral properties of Schrödinger operators and time-decay of the wave functions results in \({L^2(R^m)}\), \({m\geq 5}\). Duke Math. J. 47(1), 57–80 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jensen A., Nenciu G.: A unified approach to resolvent expansions at thresholds. Rev. Mat. Phys. 13(6), 717–754 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kopylova E.: Dispersion estimates for 2D Dirac equation. Asymptot. Anal. 84(1–2), 35–46 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Kurbenin, O.I.: The discrete spectra of the Dirac and Pauli operators. Topics in Mathematical Physics, Vol. 3, Spectral theory, pp. 43–52, M.S. Birman ed., Consultants Bureau, (1969)

  37. Murata M.: Asymptotic expansions in time for solutions of Schrödinger-type equations. J. Funct. Anal. 49(1), 10–56 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Roze S.N.: On the character of the spectrum of the Dirac operator. Theor. Math. Phys. 2, 377–382 (1970)

    Article  Google Scholar 

  39. Schlag W.: Dispersive estimates for Schrödinger operators in dimension two. Comm. Math. Phys. 257(1), 87–117 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Thaller B.: The Dirac equation. Texts and monographs in physics. Springer, Berlin (1992)

    Google Scholar 

  41. Thompson M.: The absence of embedded eigenvalues in the continuous spectrum for perturbed Dirac operators. Boll. Un. Mat. Ital. A (5) 13(3), 576–585 (1976)

    MathSciNet  MATH  Google Scholar 

  42. Toprak, E.: A weighted estimate for two dimensional Schrödinger, Matrix Schrödinger and wave equations with resonance of the first kind at zero. To appear in J. Spectr. Theory, preprint (2015)

  43. Vogelsang V.: Absence of embedded eigenvalues of the Dirac equation for long range potentials. Analysis 7(3–4), 259–274 (1987)

    MathSciNet  MATH  Google Scholar 

  44. Yamada O.: A remark on the limiting absorption method for Dirac operators. Proc. Jpn. Acad. Ser. A Math. Sci. 69, 243–246 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Burak Erdoğan.

Additional information

Communicated by W. Schlag

The first author was partially supported by the NSF Grant DMS-1501041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan, M.B., Green, W.R. The Dirac Equation in Two Dimensions: Dispersive Estimates and Classification of Threshold Obstructions. Commun. Math. Phys. 352, 719–757 (2017). https://doi.org/10.1007/s00220-016-2811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2811-8

Navigation