Skip to main content
Log in

Abstract

We analyze the one-dimensional periodic Kardar–Parisi–Zhang equation in the language of paracontrolled distributions, giving an alternative viewpoint on the seminal results of Hairer. Apart from deriving a basic existence and uniqueness result for paracontrolled solutions to the KPZ equation we perform a thorough study of some related problems. We rigorously prove the links between the KPZ equation, stochastic Burgers equation, and (linear) stochastic heat equation and also the existence of solutions starting from quite irregular initial conditions. We also show that there is a natural approximation scheme for the nonlinearity in the stochastic Burgers equation. Interpreting the KPZ equation as the value function of an optimal control problem, we give a pathwise proof for the global existence of solutions and thus for the strict positivity of solutions to the stochastic heat equation. Moreover, we study Sasamoto–Spohn type discretizations of the stochastic Burgers equation and show that their limit solves the continuous Burgers equation possibly with an additional linear transport term. As an application, we give a proof of the invariance of the white noise for the stochastic Burgers equation that does not rely on the Cole–Hopf transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allez, R., Chouk, K.: The continuous Anderson hamiltonian in dimension two. arXiv:1511.02718 (2015)

  2. Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alberts T., Khanin K., Quastel J.: The intermediate disorder regime for directed polymers in dimension 1 + 1. Ann. Probab. 42(3), 1212–1256 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Assing S.: A pregenerator for Burgers equation forced by conservative noise. Commun. Math. Phys. 225(3), 611–632 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Assing S.: A rigorous equation for the Cole–Hopf solution of the conservative KPZ equation. Stoch. Partial Differ. Equ. Anal. Comput. 1(2), 365–388 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Bailleul I., Bernicot F.: Heat semigroup and singular PDEs. J. Funct. Anal. 270(9), 3344–3452 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bailleul, I., Bernicot, F., Frey, D.: Higher order paracontrolled calculus and 3d-PAM equation. arXiv:1506.08773 (2015)

  8. Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  9. Bakhtin Y., Cator E., Khanin K.: Space–time stationary solutions for the Burgers equation. J. Am. Math. Soc. 27(1), 193–238 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boué M., Dupuis P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Bony J.-M.: Calcul symbolique et propagation des singularites pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4) 14, 209–246 (1981)

    MATH  Google Scholar 

  13. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. arXiv:1310.6869 (2013)

  14. Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential. arXiv:1501.04751 (2015)

  15. Chouk, K., Friz, P.: Support theorem for a singular semilinear stochastic partial differential equation. arXiv:1409.4250 (2014)

  16. Cannizzaro, G., Friz, P., Gassiat, P.: Malliavin calculus for regularity structures: the case of gPAM. arXiv:1511.08888 (2015)

  17. Chen, L., Kim, K.: On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations. arXiv:1410.0604 (2014)

  18. Catuogno P., Olivera C.: Strong solution of the stochastic Burgers equation. Appl. Anal. 93(3), 646–652 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Corwin I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(1), 1130001, 76 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Corwin, I., Tsai, L.-C.: KPZ equation limit of higher-spin exclusion processes. arXiv:1505.04158 (2015)

  21. Delarue F., Diel R.: Rough paths and 1D SDE with a time dependent distributional drift: application to polymers. Probab. Theory Relat. Fields 165(1), 1–63 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  22. Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions, pp. 152. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  23. Dembo A., Tsai L.-C.: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Echeverría P.: A criterion for invariant measures of Markov processes. Z. Wahrsch. Verw. Gebiete. 61(1), 1–16 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  25. Friz, P.K., Hairer, M.: A course on rough paths. Universitext, Springer, Cham (2014) (with an introduction to regularity structures)

  26. Forster D., Nelson David R., Stephen Michael J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A. 16(2), 732–749 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  27. Funaki T., Quastel J.: KPZ equation, its renormalization and invariant measures. Stoch. Partial Differ. Equ. Anal. Comput. 3(2), 159–220 (2014)

    MATH  MathSciNet  Google Scholar 

  28. Friz P., Shekhar A.: Doob–Meyer for rough paths. Bull. Inst. Math. Acad. Sin. (N.S.). 8(1), 73–84 (2013)

    MATH  MathSciNet  Google Scholar 

  29. Furlan, M.: Stochastic Navier–Stokes equation in 3 dimensions. Master’s thesis (2014) (supervised by Massimiliano Gubinelli)

  30. Gärtner J.: Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Process. Appl. 27(2), 233–260 (1988)

    MATH  MathSciNet  Google Scholar 

  31. Gubinelli M.: Controlling rough paths. J. Funct. Anal. 1, 86–140 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gubinelli, M., Imkeller, P., Perkowski, N.: A Fourier analytic approach to pathwise stochastic integration. Electron. J. Probab. 21(2) (2016)

  33. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi. 3(6) (2015)

  34. Gubinelli M., Jara M.: Regularization by noise and stochastic Burgers equations. Stoch. Partial Differ. Equ. Anal. Comput. 1(2), 325–350 (2013)

    MATH  MathSciNet  Google Scholar 

  35. Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gubinelli M., Lejay A., Tindel S.: Young integrals and SPDEs. Potential Anal. 25(4), 307–326 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gubinelli M., Perkowski N.: Lectures on singular stochastic PDEs. Ensaios Math. 29, 1–89 (2015)

    MATH  MathSciNet  Google Scholar 

  38. Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique. arXiv:1508.07764 (2015)

  39. Hairer M.: Rough stochastic PDEs. Commun. Pure Appl. Math. 64(11), 1547–1585 (2011)

    MATH  MathSciNet  Google Scholar 

  40. Hairer M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hairer M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Hairer, M., Labbé, C.: Multiplicative stochastic heat equations on the whole space. preprint arXiv:1504.07162 (2015)

  43. Hairer, M., Matetski, K.: Discretisations of rough stochastic PDEs. arXiv:1511.06937 (2015)

  44. Hairer M., Maas J.: A spatial version of the Itô–Stratonovich correction. Ann. Probab. 40(4), 1675–1714 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Hairer M., Maas J., Weber H.: Approximating rough stochastic PDEs. Commun. Pure Appl. Math. 67(5), 776–870 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. Hairer M., Pillai Natesh S.: Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Ann. Probab. 41(4), 2544–2598 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ. arXiv:1512.07845 (2015)

  48. Hairer, M., Shen, H.: A central limit theorem for the KPZ equation. arXiv:1507.01237 (2015)

  49. Kardar M., Parisi G., Zhang Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  50. Karatzas I., Shreve Steven E.: Brownian Motion and Stochastic Calculus. Springer, New York (1988)

    Book  MATH  Google Scholar 

  51. Krug, J., Spohn, H.: Kinetic Roughening of Growing Surfaces, vol. 1(99), p. 1. C. Godreche, Cambridge University Press, Cambridge (1991)

  52. Kupiainen, A.: Renormalization group and stochastic PDEs. Ann. Henri Poincaré (Springer), 1–39 (2014)

  53. Lam C.-H., Shin Franklin G.: Improved discretization of the Kardar–Parisi–Zhang equation. Phys. Rev. E 58(5), 5592–5595 (1998)

    Article  ADS  Google Scholar 

  54. Meyer, Y.: Remarques sur un théorème de J.-M. Bony. Rend. Circ. Mate. Palermo. Ser. II, 1–20 (1981)

  55. Moreno F., Gregorio R.: On the (strict) positivity of solutions of the stochastic heat equation. Ann. Probab. 42(4), 1635–1643 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mueller C.: On the support of solutions to the heat equation with noise. Stoch. Stoch. Rep. 37(4), 225–245 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  57. Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic Ising–Kac model to \({\phi^{4}_{2}}\). arXiv:1410.1179 (2014)

  58. Perkowski, N.: Studies of robustness in stochastic analysis and mathematical finance. Ph.D. thesis (2014)

  59. Prömel David J., Trabs M.: Rough differential equations driven by signals in Besov spaces. J. Differ. Equ. 260(6), 5202–5249 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Quastel J., Spohn H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160(4), 965–984 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Quastel, J.: The Kardar–Parisi–Zhang equation and universality class. In: XVIIth International Congress on Mathematical Physics, pp. 113–133 (2014)

  62. Sasamoto T., Spohn H.: Superdiffusivity of the 1D lattice Kardar–Parisi–Zhang equation. J. Stat. Phys. 137(5–6), 917–935 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Sasamoto T., Spohn H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nuclear Phys. B. 834(3), 523–542 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Üstünel A.S.: Variational calculation of Laplace transforms via entropy on Wiener space and applications. J. Funct. Anal. 267(8), 3058–3083 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  65. Weinan E., Khanin K., Mazel A., Sinai Ya.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. (2) 151(3), 877–960 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  66. Zabusky Norman J., Kruskal Martin D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240 (1965)

    Article  ADS  MATH  Google Scholar 

  67. Zhu, R., Zhu, X.: Approximating three-dimensional Navier–Stokes equations driven by space–time white noise. arXiv:1409.4864 (2014)

  68. Zhu R., Zhu X.: Three-dimensional Navier–Stokes equations driven by space–time white noise. J. Differ. Equ. 259(9), 4443–4508 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Zhu, R., Zhu, X.: Lattice approximation to the dynamical \({\Phi_{3}^{4}}\) model. arXiv:1508.05613 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Gubinelli.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubinelli, M., Perkowski, N. KPZ Reloaded. Commun. Math. Phys. 349, 165–269 (2017). https://doi.org/10.1007/s00220-016-2788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2788-3

Navigation