Skip to main content
Log in

Energy Conservation in Two-dimensional Incompressible Ideal Fluids

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This note addresses the issue of energy conservation for the 2D Euler system with an L p-control on vorticity. We provide a direct argument, based on a mollification in physical space, to show that the energy of a weak solution is conserved if \({\omega = \nabla \times u \in L^{\frac{3}{2}}}\). An example of a 2D field in the class \({\omega \in L^{\frac{3}{2} - \epsilon}}\) for any \(\epsilon > 0\), and \({u \in B^{1/3}_{3,\infty}}\) (Onsager critical space, see Shvydkoy in Discr Contin Dyn Syst Ser S 3(3):473–496, 2010) is constructed with non-vanishing energy flux. This demonstrates sharpness of the kinematic argument, which does not differentiate between 2D and 3D, and requires Onsager’s regularity control on the solution. Next, we show that for physically realizable solutions there is a mechanism preventing the anomalous dissipation in 2D that does not require such a control. Namely, we prove that any solution to the Euler equations produced via a vanishing viscosity limit from the Navier–Stokes equations, with \({\omega \in L^p}\), for p >  1, conserves energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardos C., Titi E.S.: Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations. Discr. Contin. Dyn. Syst. Ser. S 3(2), 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buckmaster, T., De Lellis, C., Székelyhidi, L.: Dissipative Euler flows with Onsager-critical spatial regularity. To appear in Commun. Tur. Appl. Math. http://arxiv.org/abs/1404.6915

  3. Buckmaster T., De Lellis C., Isett P., Székelyhidi L. Jr: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. 182, 127–172 (2015)

    Article  MATH  Google Scholar 

  4. Cheskidov A., Constantin P., Friedlander S., Shvydkoy R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheskidov A., Shvydkoy R.: Ill-posedness of the basic equations of fluid dynamics in Besov spaces. Proc. Am. Math. Soc. 138(3), 1059–1067 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choffrut A.: h-Principles for the incompressible Euler equations. Arch. Ration. Mech. Anal. 210(1), 133–163 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin P., Weinan E., Titi Edriss S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    Article  ADS  MATH  Google Scholar 

  8. Crippa G., Spirito S.: Renormalized solutions of the 2D Euler equations. Commun. Math. Phys. 339(1), 191–198 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lellis C., Székelyhidi L. Jr: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. DiPerna R.J., Majda A.J.: Concentrations in regularizations for 2-D incompressible flow. Commun. Pure Appl. Math. 40(3), 301–345 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13(1), 249–255 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Eyink G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D 78(3–4), 222–240 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eyink G.L., Sreenivasan K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Modern Phys. 78(1), 87–135 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Isett, P.: Holder continuous Euler flows with compact support in time. ProQuest LLC, Ann Arbor, MI. Thesis Ph.D., Princeton University (2013)

  15. Lopes Filho M.C., Nussenzveig Lopes H.J., Tadmor E.: Approximate solutions of the incompressible Euler equations with no concentrations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(3), 371–412 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Luo X., Shvydkoy R.: 2D homogeneous solutions to the Euler equation. Commun. Partial Differ. Equ. 40(9), 1666–1687 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Onsager L.: Statistical hydrodynamics. Nuovo Cimento (9) 6(Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

    Article  MathSciNet  Google Scholar 

  18. Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shnirelman A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shvydkoy R.: On the energy of inviscid singular flows. J. Math. Anal. Appl. 349(2), 583–595 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shvydkoy R.: Lectures on the Onsager conjecture. Discr. Contin. Dyn. Syst. Ser. S 3(3), 473–496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shvydkoy.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheskidov, A., Filho, M.C.L., Lopes, H.J.N. et al. Energy Conservation in Two-dimensional Incompressible Ideal Fluids. Commun. Math. Phys. 348, 129–143 (2016). https://doi.org/10.1007/s00220-016-2730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2730-8

Navigation