Skip to main content
Log in

Non-Perturbative Localization with Quasiperiodic Potential in Continuous Time

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider continuous one-dimensional multifrequency Schrödinger operators, with analytic potential, and prove Anderson localization in the regime of positive Lyapunov exponent for almost all phases and almost all Diophantine frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourgain J., Goldstein M.: On nonperturbative localization with quasi-periodic potential. Ann. Math. (2). 152(3), 835–879 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjerklöv K.: Positive Lyapunov exponents for continuous quasiperiodic Schrödinger equations. J. Math. Phys. 47(2), 022702, 4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain J.: Green’s function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

  4. Bourgain J.: Positivity and continuity of the Lyapounov exponent for shifts on \({\mathbb{T}^d}\) with arbitrary frequency vector and real analytic potential. J. Anal. Math. 96, 313–355 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Damanik D., Goldstein M.: On the inverse spectral problem for the quasi-periodic Schrödinger equation. Publ. Math. Inst. Hautes Études Sci. 119, 217–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eliasson L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146(3), 447–482 (1992)

    Article  ADS  MATH  Google Scholar 

  7. Fröhlich J., Spencer T., Wittwer P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1), 5–25 (1990)

    Article  ADS  MATH  Google Scholar 

  8. Goldstein M., Schlag W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. of Math. (2) 154(1), 155–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldstein M., Schlag W.: Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal. 18(3), 755–869 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hlawka, E.: Über eine Methode von E. Hecke in der Theorie der Gleichverteilung. Acta Arith. 24, 11–31, (1973). Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, I.

  11. Jitomirskaya Svetlana Ya.: Metal-insulator transition for the almost Mathieu operator. Ann. Math. (2). 150(3), 1159–1175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levenberg N.: Approximation in \({\mathbb{C}^N}\). Surv. Approx. Theory. 2, 92–140 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Markushevich A.I.: Theory of functions of a complex variable. Vol. III. Revised English edition, translated and edited by Richard A. Silverman. Prentice-Hall, Inc., Englewood Cliffs (1967)

  14. Siciak Józef.: Extremal plurisubharmonic functions in \({{\bf C}^{n}}\). Ann. Polon. Math. 39, 175–211 (1981)

    MathSciNet  MATH  Google Scholar 

  15. Simon Barry.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sorets E., Spencer T.: Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun. Math. Phys. 142(3), 543–566 (1991)

    Article  ADS  MATH  Google Scholar 

  17. Suetin P.K.: Series of Faber polynomials, volume 1 of Analytical Methods and Special Functions. Gordon and Breach Science Publishers, Amsterdam, 1998. Translated from the 1984 Russian original by E. V. Pankratiev

  18. You J., Zhou Q.: Phase transition and semi-global reducibility. Commun. Math. Phys. 330(3), 1095–1113 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Voda.

Additional information

Communicated by W. Schlag

I.B. was supported by an NSERC Discovery grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, I., Kinzebulatov, D. & Voda, M. Non-Perturbative Localization with Quasiperiodic Potential in Continuous Time. Commun. Math. Phys. 351, 1149–1175 (2017). https://doi.org/10.1007/s00220-016-2723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2723-7

Navigation