Skip to main content
Log in

Chaotic Orbits for Systems of Nonlocal Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a system of nonlocal equations driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way. In particular, heteroclinic, homoclinic and chaotic trajectories are constructed. This is the first attempt to consider a nonlocal version of this type of dynamical systems in a variational setting and the first result regarding symbolic dynamics in a fractional framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessio F., Bertotti M.L., Montecchiari P.: Multibump solutions to possibly degenerate equilibria for almost periodic Lagrangian systems. Z. Angew. Math. Phys. 50(6), 860–891 (1999). doi:10.1007/s000330050184 CODEN AZMPA8, ISSN 0044-2275

    Article  MathSciNet  MATH  Google Scholar 

  2. Berti M., Bolle P.: Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 9(3), 167–175 (1998) ISSN 1120-6330

    MathSciNet  MATH  Google Scholar 

  3. Bessi U.: Global homoclinic bifurcation for damped systems. Math. Z. 218(3), 387–415 (1995). doi:10.1007/BF02571911 CODEN MAZEAX, ISSN 0025-5874

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolotin S., MacKay R.: Multibump orbits near the anti-integrable limit for Lagrangian systems. Nonlinearity 10(5), 1015–1029 (1997). doi:10.1088/0951-7715/10/5/001 CODEN NONLE5, ISSN 0951-7715

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Barrios B., Peral I., Soria F., Valdinoci E.: A Widder’s type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213(2), 629–650 (2014). doi:10.1007/s00205-014-0733-1 ISSN 0003-9527

    Article  MathSciNet  MATH  Google Scholar 

  6. Campanato S.: Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3) 17, 175–188 (1963)

    MathSciNet  MATH  Google Scholar 

  7. Cozzi M., Passalacqua T.: One-dimensional solutions of non-local Allen–Cahn-type equations with rough kernels. J. Differ. Equ. 260(8), 6638–6696 (2016). doi:10.1016/j.jde.2016.01.006 ISSN 0022-0396

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Caffarelli L., Silvestre L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011). doi:10.1007/s00205-010-0336-4 ISSN 0003-9527

    Article  MathSciNet  MATH  Google Scholar 

  9. Cabré X., Sire Y.: Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367(2), 911–941 (2015). doi:10.1090/S0002-9947-2014-05906-0 ISSN 0002-9947

    Article  MathSciNet  MATH  Google Scholar 

  10. Coti Zelati V., Rabinowitz P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4(4), 693–727 (1991). doi:10.2307/2939286 ISSN 0894-0347

    Article  MathSciNet  MATH  Google Scholar 

  11. del Castillo-Negrete D.: Fractional diffusion models of nonlocal transport. Phys. Plasmas 13(8), 082308,16 (2006). doi:10.1063/1.2336114 CODEN PHPAEN, ISSN 1070-664X

    MathSciNet  Google Scholar 

  12. Dipierro S., Figalli A., Valdinoci E.: Strongly nonlocal dislocation dynamics in crystals. Commun. Partial Differ. Equ. 39(12), 2351–2387 (2014). doi:10.1080/03605302.2014.914536 ISSN 0360-5302

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012). doi:10.1016/j.bulsci.2011.12.004 ISSN 0007-4497

    Article  MathSciNet  MATH  Google Scholar 

  14. Dipierro S., Palatucci G., Valdinoci E.: Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting. Commun. Math. Phys. 333(2), 1061–1105 (2015). doi:10.1007/s00220-014-2118-6 ISSN 0010-3616

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Garroni A., Müller S.: A variational model for dislocations in the line tension limit. Arch. Ration. Mech. Anal. 181(3), 535–578 (2006). doi:10.1007/s00205-006-0432-7 ISSN 0003-9527

    Article  MathSciNet  MATH  Google Scholar 

  16. del Mar González M., Monneau R.: Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete Contin. Dyn. Syst. 32(4), 1255–1286 (2012) ISSN 1078-0947

    MathSciNet  MATH  Google Scholar 

  17. Maxwell T.O.: Heteroclinic chains for a reversible Hamiltonian system. Nonlinear Anal. 28(5), 871–887 (1997). doi:10.1016/0362-546X(95)00193-Y CODEN NOANDD, ISSN 0362-546X

    Article  MathSciNet  MATH  Google Scholar 

  18. McLean W.: Strongly elliptic systems and boundary integral equations, pp. xiv+357. Cambridge University Press, Cambridge. ISBN 0-521-66332-6; 0-521-66375-X.

    Google Scholar 

  19. Monneau R., Patrizi S.: Homogenization of the Peierls–Nabarro model for dislocation dynamics. J. Differ. Equ. 253(7), 2064–2105 (2012). doi:10.1016/j.jde.2012.06.019 CODEN JDEQAK, ISSN 0022-0396

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Palatucci G., Savin O., Valdinoci E.: Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. (4) 192(4), 673–718 (2013). doi:10.1007/s10231-011-0243-9 ISSN 0373-3114

    Article  MathSciNet  MATH  Google Scholar 

  21. Patrizi S., Valdinoci E.: Crystal dislocations with different orientations and collisions. Arch. Ration. Mech. Anal. 217(1), 231–261 (2015). doi:10.1007/s00205-014-0832-z ISSN 0003-9527

    Article  MathSciNet  MATH  Google Scholar 

  22. Patrizi S., Valdinoci E.: Homogenization and Orowan’s law for anisotropic fractional operators of any order. Nonlinear Anal. 119, 3–36 (2015). doi:10.1016/j.na.2014.07.010 ISSN 0362-546X

    Article  MathSciNet  MATH  Google Scholar 

  23. Rabinowitz, P.H.: Periodic and heteroclinic orbits for a periodic Hamiltonian system. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(5), 331–346. http://www.numdam.org/item?id=AIHPC_1989__6_5_331_0. ISSN 0294-1449 (1989)

  24. Rabinowitz P.H.: Heteroclinics for a reversible Hamiltonian system. Ergod. Theory Dyn. Syst. 14(4), 817–829 (1994). doi:10.1017/S0143385700008178 ISSN 0143-3857

    Article  MathSciNet  MATH  Google Scholar 

  25. Rabinowitz P.H.: A multibump construction in a degenerate setting. Calc. Var. Partial Differ. Equ. 5(2), 159–182 (1997). doi:10.1007/s005260050064 ISSN 0944-2669

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz P.H.: Connecting orbits for a reversible Hamiltonian system. Ergod. Theory Dyn. Syst. 20(6), 1767–1784 (2000). doi:10.1017/S0143385700000985 ISSN 0143-3857

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabinowitz, P.H., Coti Zelati, V.: Multichain-type solutions for Hamiltonian systems. In: Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999), vol. 5 of Electron. J. Differ. Equ. Conf., pp. 223–235 (electronic). Southwest Texas State Univ., San Marcos (2000)

  28. Séré É.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209(1), 27–42 (1992). doi:10.1007/BF02570817 CODEN MAZEAX, ISSN 0025-5874

    Article  MathSciNet  MATH  Google Scholar 

  29. Savin O., Valdinoci E.: \({\Gamma}\)-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(4), 479–500 (2012). doi:10.1016/j.anihpc.2012.01.006 ISSN 0294-1449

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Patrizi.

Additional information

Communicated by C. Liverani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipierro, S., Patrizi, S. & Valdinoci, E. Chaotic Orbits for Systems of Nonlocal Equations. Commun. Math. Phys. 349, 583–626 (2017). https://doi.org/10.1007/s00220-016-2713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2713-9

Navigation