Skip to main content
Log in

Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a new method for obtaining quantitative results in stochastic homogenization for linear elliptic equations in divergence form. Unlike previous works on the topic, our method does not use concentration inequalities (such as Poincaré or logarithmic Sobolev inequalities in the probability space) and relies instead on a higher (C k, k ≥ 1) regularity theory for solutions of the heterogeneous equation, which is valid on length scales larger than a certain specified mesoscopic scale. This regularity theory, which is of independent interest, allows us to, in effect, localize the dependence of the solutions on the coefficients and thereby accelerate the rate of convergence of the expected energy of the cell problem by a bootstrap argument. The fluctuations of the energy are then tightly controlled using subadditivity. The convergence of the energy gives control of the scaling of the spatial averages of gradients and fluxes (that is, it quantifies the weak convergence of these quantities), which yields, by a new “multiscale” Poincaré inequality, quantitative estimates on the sublinearity of the corrector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adolfsson V., Jerison D.: L p-integrability of the second order derivatives for the Neumann problem in convex domains. Indiana Univ. Math. J. 43(4), 1123–1138 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong S.N., Mourrat J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong, S.N., Shen, Z.: Lipschitz estimates in almost-periodic homogenization. Commun. Pure Appl. Math. (in press). arXiv:1409.2094

  4. Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. 48, 423–481 (2016)

  5. Avellaneda M., Lin F.-H.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40(6), 803–847 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avellaneda M., Lin F.-H.: L p bounds on singular integrals in homogenization. Commun. Pure Appl. Math. 44(8–9), 897–910 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dal Maso G., Modica L.: Nonlinear stochastic homogenization. Ann. Mat. Pura Appl. (4) 144, 347–389 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dal Maso G., Modica L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Fischer, J., Otto, F.: A higher-order large-scale regularity theory for random elliptic operators. Preprint. arXiv:1503.07578

  10. Gloria A., Neukamm S., Otto F.: An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. ESAIM Math. Model. Numer. Anal. 48(2), 325–346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gloria A., Neukamm S., Otto F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gloria A., Neukamm S., Otto F.: A regularity theory for random elliptic operators. Preprint. arXiv:1409.2678

  13. Gloria A., Otto F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39(3), 779–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gloria A., Otto F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22(1), 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gloria, A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. (in press). arXiv:1409.0801

  16. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Classics in Applied Mathematics, vol. 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

  17. Jikov V.V., Kozlov S.M., Oleĭnik O.A.: Homogenization of differential operators and integral functionals. Springer, Berlin (1994)

    Book  Google Scholar 

  18. Kozlov, S.M.: Averaging of differential operators with almost periodic rapidly oscillating coefficients. Mat. Sb. (N.S.) 107(149)(2), 199–217, 317 (1978)

  19. Marahrens D., Otto F.: Annealed estimates on the Green’s function. Probab. Theory Relat. Fields 163(3), 527–573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Naddaf, A., Spencer, T.: Estimates on the variance of some homogenization problems. Unpublished preprint (1998)

  21. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Random Fields, Vol. I, II (Esztergom, 1979), vol. 27. Colloq. Math. Soc. János Bolyai, pp. 835–873. North-Holland, Amsterdam (1981)

  22. Shen, Z.: Boundary estimates in elliptic homogenization. Preprint. arXiv:1505.00694

  23. Yurinskiĭ, V.V.: Averaging of symmetric diffusion in a random medium. Sibirsk. Mat. Zh. 27(4), 167–180, 215 (1986)

  24. Yurinskiĭ, V.V.: Homogenization error estimates for random elliptic operators. In: Mathematics of Random Media (Blacksburg, VA, 1989). Lectures in Applied Mathematics, vol. 27, pp. 285–291. American Mathematical Society, Providence (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Armstrong.

Additional information

Communicated by L. Erdös

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, S., Kuusi, T. & Mourrat, JC. Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization. Commun. Math. Phys. 347, 315–361 (2016). https://doi.org/10.1007/s00220-016-2663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2663-2

Keywords

Navigation