Skip to main content
Log in

Mass in Kähler Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a simple, explicit formula for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold, assuming only the sort of weak fall-off conditions required for the mass to actually be well-defined. For ALE scalar-flat Kähler manifolds, the mass turns out to be a topological invariant, depending only on the underlying smooth manifold, the first Chern class of the complex structure, and the Kähler class of the metric. When the metric is actually AE (asymptotically Euclidean), our formula not only implies a positive mass theorem for Kähler metrics, but also yields a Penrose-type inequality for the mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V.: Classification of log canonical surface singularities: arithmetical proof. In: Flips and Abundance for Algebraic Threefolds, Société Mathématique de France, Paris, 1992, pp. 47–58. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992)

  2. Andreotti A., Grauert H.: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193–259 (1962)

    MathSciNet  MATH  Google Scholar 

  3. Arezzo, C. Lena, R., Mazzieri, L.: On the resolution of extremal and constant scalar curvature Kaehler orbifolds. Int. Math. Res. Not. IMRN. (2016). doi:10.1093/imrn/rnv346 (First published online December 19, 2015)

  4. Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. (2) 122, 997–1006 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Baily W.L.: On the imbedding of V-manifolds in projective space. Am. J. Math. 79, 403–430 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4. Springer, Berlin (1984)

  7. Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10. Springer, Berlin (1987)

  9. Bray H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Brill D.R.: On the positive definite mass of the Bondi–Weber–Wheeler time-symmetric gravitational waves. Ann. Phys. 7, 466–483 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  11. Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry, vol. 102, Annals of Mathematics Studies, pp. 259–290. Princeton University Press, Princeton (1982)

  12. Calderbank D.M.J., Singer M.A.: Einstein metrics and complex singularities. Invent. Math. 156, 405–443 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Carron G.: Cohomologie L 2 et parabolicité. J. Geom. Anal. 15, 391–404 (2005)

    Article  MathSciNet  Google Scholar 

  14. Chen X.X., LeBrun C., Weber B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21, 1137–1168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space-Time (Erice, 1985), vol. 138, NATO Adv. Sci. Inst. Ser. B Phys., pp. 49–59. Plenum, New York. Digitized version available at http://homepage.univie.ac.at/piotr.chrusciel/scans/index.html (1986)

  16. Commichau, M., Grauert, H.: Das formale Prinzip für kompakte komplexe Untermannigfaltigkeiten mit 1-positivem Normalenbündel. In: Recent Developments in Several Complex Variables, vol. 100, Annals of Mathematics Studies, pp. 101–126. Princeton University Press, Princeton (1981)

  17. Conlon, R.J., Hein, H.-J.: Asymptotically conical Calabi–Yau manifolds, III. e-print arXiv:1405.7140 [math.DG] (2014)

  18. Eastwood M., LeBrun C.: Thickening and supersymmetric extensions of complex manifolds. Am. J. Math. 108, 1177–1192 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gibbons G.W., Hawking S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys. 66, 291–310 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  20. Grauert H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  22. Haskins M., Hein H.-J., Nordström J.: Asymptotically cylindrical Calabi–Yau manifolds. J. Differ. Geom. 101, 213–265 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Hausel T., Hunsicker E., Mazzeo R.: Hodge cohomology of gravitational instantons. Duke Math. J. 122, 485–548 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hill C.D., Taylor M.: Integrability of rough almost complex structures. J. Geom. Anal. 13, 163–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirschowitz A.: On the convergence of formal equivalence between embeddings. Ann. Math. (2) 113, 501–514 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hitchin, N.J.: Complex Manifolds and Einstein’s Equations, in Twistor Geometry and Nonlinear Systems (Primorsko, 1980), pp. 73–99. Springer, Berlin (1982)

  27. Honda, N.: Scalar flat Kähler metrics on affine bundles over \({\mathbb{C}\mathbb{P}^1}\). SIGMA Symmetry Integr. Geom. Methods Appl. 10, 1–25 (2014) (Paper 046)

  28. Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int.Math. Res. Not. (20), 1045–1058 (1997)

  29. Huybrechts, D.: Complex Geometry. An Introduction. Universitext, Springer, Berlin (2005)

  30. Joyce, D.D.: Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford (2000)

  31. Kodaira K.: A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. Math. (2) 75, 146–162 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. LeBrun, C.: Spaces of Complex Geodesics and Related Structures, PhD thesis, Oxford University. Digitized version available at http://ora.ox.ac.uk/objects/uuid:e29dd99c-0437-4956-8280-89dda76fa3f8 (1980)

  33. LeBrun C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. LeBrun C.: Explicit self-dual metrics on \({\mathbb{C} \mathbb{P}_2\#\cdots \#\mathbb{C} \mathbb{P}_2}\). J. Differ. Geom. 34, 223–253 (1991)

    MathSciNet  Google Scholar 

  35. LeBrun C.: Twistors, Kähler manifolds, and bimeromorphic geometry. I. J. Am. Math. Soc. 5, 289–316 (1992)

    MathSciNet  MATH  Google Scholar 

  36. LeBrun C., Maskit B.: On optimal 4-dimensional metrics. J. Geom. Anal. 18, 537–564 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. LeBrun, C., Poon, Y.S.: Self-dual manifolds with symmetry. In: Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990), vol. 54, Proc. Sympos. Pure Math., American Mathematical Society, Providence, pp. 365–377 (1993)

  38. Lee J., Parker T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lock, M., Viaclovsky, J.: A smörgåsbord of scalar-flat Kähler ALE surfaces. e-print arXiv:1410.6461 [math.DG] (2014)

  40. Malgrange, B.: Sur l’intégrabilité des structures presque-complexes, in Symposia Mathematica, vol. II (INDAM, Rome, 1968), pp. 289–296. Academic Press, London (1969)

  41. Marshall, S.: Deformations of Special Lagrangian Submanifolds, PhD thesis, Oxford University, 2002. Digitized version available at http://people.maths.ox.ac.uk/joyce/theses/theses.html

  42. Nijenhuis A., Woolf W.B.: Some integration problems in almost-complex and complex manifolds. Ann. Math. (2) 77, 424–489 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Penrose, R.: Naked singularities. Ann. New York Acad. Sci., 224, 125–134 (1973) (Sixth Texas Symposium on Relativistic Astrophysics)

  44. Rollin Y., Singer M.: Constant scalar curvature Kähler surfaces and parabolic polystability. J. Geom. Anal. 19, 107–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rossi H.: Vector fields on analytic spaces. Ann. Math. (2) 78, 455–467 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schoen R.M., Yau S.T.: Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. Proc. Nat. Acad. Sci. USA. 76, 1024–1025 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Schouten, J., Struik, D.: Einführung in die neueren Methoden der Differentialgeometrie, vol. 2. P. Noordhoff, Groningen (1938)

  48. Schouten, J.A.: Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications, 2nd edn., Springer, Berlin (1954)

  49. Weber, B.: First Betti numbers of Kähler manifolds with weakly pseudo-convex boundary. e-print arXiv:1110.4571 [math.DG] (2011)

  50. Weyl, H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., 1921 (1921), pp. 99–112

  51. Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude LeBrun.

Additional information

Communicated by P. T. Chruściel

H.-J. Hein was research funded in part by NSF grant DMS-1514709.

C. LeBrun was research funded in part by NSF grant DMS-1510094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hein, HJ., LeBrun, C. Mass in Kähler Geometry. Commun. Math. Phys. 347, 183–221 (2016). https://doi.org/10.1007/s00220-016-2661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2661-4

Navigation