Skip to main content
Log in

Classification of Quantum Groups and Belavin–Drinfeld Cohomologies

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the present article we discuss the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra \({\mathfrak{g}}\). This problem is reduced to the classification of all Lie bialgebra structures on \({\mathfrak{g}(\mathbb{K})}\), where \({\mathbb{K}=\mathbb{C}((\hbar))}\). The associated classical double is of the form \({\mathfrak{g}(\mathbb{K})\otimes_{\mathbb{K}} A}\), where A is one of the following: \({\mathbb{K}[\varepsilon]}\), where \({\varepsilon^{2}=0}\), \({\mathbb{K}\oplus\mathbb{K}}\) or \({\mathbb{K}[j]}\), where \({j^{2}=\hbar}\). The first case is related to quasi-Frobenius Lie algebras. In the second and third cases we introduce a theory of Belavin–Drinfeld cohomology associated to any non-skewsymmetric r-matrix on the Belavin–Drinfeld list (Belavin and Drinfeld in Soviet Sci Rev Sect C: Math Phys Rev 4:93–165, 1984). We prove a one-to-one correspondence between gauge equivalence classes of Lie bialgebra structures on \({\mathfrak{g}(\mathbb{K})}\) and cohomology classes (in case II) and twisted cohomology classes (in case III) associated to any non-skewsymmetric r-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belavin A., Drinfeld V.: Triangle equations and simple Lie algebras. Soviet Sci. Rev. Sect. C: Math. Phys. Rev. 4, 93–165 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Benkart G., Zelmanov E.: Lie algebras graded by finite root systems and intersection matrix algebras. Invent. math. 126, 1–45 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Drinfeld V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations. (Russian) Dokl. Akad. Nauk SSSR 268, 285–287 (1983)

    MathSciNet  Google Scholar 

  4. Drinfeld, V.G.: Quantum groups. Proceedings ICM (Berkeley 1996). AMS 1, 798–820 (1997)

  5. Etingof P., Kazhdan D.: Quantization of Lie bialgebras I. Sel. Math. (NS) 2, 1–41 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Etingof P., Kazhdan D.: Quantization of Lie bialgebras II. Sel. Math. (NS) 4, 213–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Etingof P., Schiffmann O.: Lectures on Quantum Groups. International Press, Cambridge (1988)

    MATH  Google Scholar 

  8. Montaner F., Stolin A., Zelmanov E.: Classification of Lie bialgebras over current algebras. Sel. Math. (NS) 16, 935–962 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Serre J.-P.: Local Fields. Springer-Verlag, New York (1979)

    Book  MATH  Google Scholar 

  10. Stolin A.: Some remarks on Lie bialgebra structures on simple complex Lie algebras. Commun. Algebra 27(9), 4289–4302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulia Pop.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadets, B., Karolinsky, E., Pop, I. et al. Classification of Quantum Groups and Belavin–Drinfeld Cohomologies. Commun. Math. Phys. 344, 1–24 (2016). https://doi.org/10.1007/s00220-016-2622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2622-y

Keywords

Navigation