Skip to main content
Log in

Crossover to the Stochastic Burgers Equation for the WASEP with a Slow Bond

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the weakly asymmetric simple exclusion process in the presence of a slow bond and starting from the invariant state, namely the Bernoulli product measure of parameter \({\rho \in (0,1)}\). The rate of passage of particles to the right (resp. left) is \({\frac{1}{2} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{1}{2} - \frac{a}{2n^{\gamma}}}\)) except at the bond of vertices \({\{-1,0\}}\) where the rate to the right (resp. left) is given by \({\frac{\alpha}{2n^\beta} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{\alpha}{2n^\beta}-\frac{a}{2n^{\gamma}}}\)). Above, \({\alpha > 0}\), \({\gamma \geq \beta \geq 0}\), \({a\geq 0}\). For \({\beta < 1}\), we show that the limit density fluctuation field is an Ornstein–Uhlenbeck process defined on the Schwartz space if \({\gamma > \frac{1}{2}}\), while for \({\gamma = \frac{1}{2}}\) it is an energy solution of the stochastic Burgers equation. For \({\gamma \geq \beta =1}\), it is an Ornstein–Uhlenbeck process associated to the heat equation with Robin’s boundary conditions. For \({\gamma \geq \beta > 1}\), the limit density fluctuation field is an Ornstein–Uhlenbeck process associated to the heat equation with Neumann’s boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardin C., Gonçalves P.: Anomalous fluctuations for a perturbed Hamiltonian system with exponential interactions. Commun. Math. Phys. 325(1), 291–332 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bernardin, C., Gonçalves, P., Jara, M.: 3/4-Fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise. Arch. Rational Arch. Anal. 220(2), 505–542 (2016)

  3. Bernardin C., Gonçalves P., Jara M., Sasada M., Simon M.: From normal diffusion to superdiffusion of energy in the evanescent flip noise limit. J. Stat. Phys. 159(6), 1327–1368 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. De Masi A., Presutti E., Scacciatelli E.: The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Stat. 25(1), 1–38 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Dittrich P., Gärtner J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151(1), 75–93 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edwards S.F., Wilkinson D.R.: The surface statistics of a granular aggregate. Proc. R. Soc. A 381(1780), 17–31 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  8. Franco T., Gonçalves P., Neumann A.: Phase transition in equilibrium fluctuations of symmetric slowed exclusion. Stoch. Proc. Appl. 123(12), 4156–4185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Franco T., Gonçalves P., Neumann A.: Occupation time of exclusion processes with conductances. J. Stat. Phys. 156(5), 975–997 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gonçalves P.: Central limit theorem for a tagged particle in asymmetric simple exclusion. Stoch. Proc. Appl. 118(3), 474–502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gonçalves P., Jara M.: Crossover to the KPZ Equation. Ann. H. Poincaré 13(4), 813–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gonçalves P., Jara M.: Scaling limits of additive functionals of interacting particle systems. Commun. Pure Appl. Math. 66(5), 649–677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Rational Mech. Anal. 212(2), 597–644 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gonçalves P., Jara M., Sethuraman S.: A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43(1), 286–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gonçalves P., Landim C., Toninelli C.: Hydrodynamic limit for a particle system with degenerate rates. Ann. Inst. H. Poincaré Probab. Stat. 45(4), 887–909 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karatzas I., Shreve S.: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  17. Kardar M., Parisi G., Zhang Y.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  18. Kipnis C., Landim C.: Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, vol. 320, 1st edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  19. Komorowski T., Landim C., Olla S.: Fluctuations in Markov Processes, Grundlehren der mathematischen Wissenschaften, vol. 345, 1st edn. Springer, Berlin (2012)

    Google Scholar 

  20. Mitoma I.: Tightness of probabilities on \({{C}([0, 1]; \mathscr{Y}')}\) and \({{D}([0, 1]; \mathscr{Y}')}\). Ann. Probab. 11(4), 989–999 (1983)

    Article  MathSciNet  Google Scholar 

  21. Olla S., Sasada M.: Macroscopic energy diffusion for a chain of anharmonic oscillators. Probab. Theory Related Fields 157(3–4), 721–775 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ravishankar K.: Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in \({\mathbb{Z}^d}\). Stoch. Proc. Appl. 42(1), 31–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seppäläinen T.: Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Stat. Phys. 102(1–2), 69–96 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Spohn H.: Large Scale Dynamics of Interacting Particles. Theoretical and Mathematical Physics, 1st edn. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Gonçalves.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, T., Gonçalves, P. & Simon, M. Crossover to the Stochastic Burgers Equation for the WASEP with a Slow Bond. Commun. Math. Phys. 346, 801–838 (2016). https://doi.org/10.1007/s00220-016-2607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2607-x

Keywords

Navigation