Skip to main content
Log in

External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Shale–Stinespring Theorem (J Math Mech 14:315–322, 1965) together with Ruijsenaar’s criterion (J Math Phys 18(4):720–737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential \({A_\mu}\) are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general \({A_\mu}\), show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of \({A_\mu}\) w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Deckert D.-A., Dürr D., Merkl F., Schottenloher M.: Time-evolution of the external field problem in quantum electrodynamics. J. Math. Phys. 51(12), 122301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Deckert D.-A., Merkl F.: Dirac equation with external potential and initial data on Cauchy surfaces. J. Math. Phys. 55(12), 122305 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré Sect. A (N.S.), 19, 211–295 (1974)

  4. Finster, F.: The Continuum Limit of Causal Fermion Systems. Book based on the preprints arXiv:0908.1542, arXiv:1211.3351, and arXiv:1409.2568 [math-ph], (in preparation)

  5. Finster F., Kleiner J.: Causal fermion systems as a candidate for a unified physical theory. J. Phys. Conf. Ser. 626, 012020 (2015)

    Article  ADS  Google Scholar 

  6. Finster, F., Kleiner, J., Treude, J.-H.: An introduction to the fermionic projector and causal fermion systems (2015) (in preparation)

  7. Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: mass oscillation property and Hadamard states. arXiv:1501.05522 (2015)

  8. Finster, F., Reintjes, M.: A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds II-space-times of infinite lifetime. arXiv:1312.7209 (2013)

  9. Fierz, H., Scharf, G.: Particle interpretation for external field problems in QED. Helvetica Physica Acta. Physica Theoretica 52(4), 437–453 (1980)

  10. Gracia-Bondia J.M.: The phase of the scattering matrix. Phys. Lett. B. 482(1–3), 315–322 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gravejat P., Hainzl C., Lewin M., Séré E.: Construction of the Pauli–Villars-regulated dirac vacuum in electromagnetic fields. Arch. Ration. Mech. Anal. 208(2), 603–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Langmann E., Mickelsson J.: Scattering matrix in external field problems. J. Math. Phys. 37(8), 3933–3953 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Mickelsson J.: Vacuum polarization and the geometric phase: gauge invariance. J. Math. Phys. 39(2), 831–837 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Mickelsson J.: The phase of the scattering operator from the geometry of certain infinite-dimensional groups. Lett. Math. Phys. 104(10), 1189–1199 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Pickl P., Dürr D.: Adiabatic pair creation in heavy-ion and laser fields. EPL (Europhys. Lett.) 81(4), 40001 (2008)

    Article  ADS  Google Scholar 

  16. Ruijsenaars S.N.M.: Charged particles in external fields. I. Classical theory. J. Math. Phys. 18(4), 720–737 (1977)

  17. Schwinger J.: The theory of quantized fields. I. Phys. Rev. 82(2), 914–927 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Scharf G.: Finite Quantum Electrodynamics. Texts and Monographs in Physics, 2nd edn. Springer-Verlag, Berlin (1995)

    Book  Google Scholar 

  19. Shale D., Stinespring W.F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315–322 (1965)

    MathSciNet  MATH  Google Scholar 

  20. Tomonaga S.: On a relativistically invariant formulation of the quantum theory of wave fields. Progress Theor. Phys. 1, 27–42 (1946)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-A. Deckert.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deckert, DA., Merkl, F. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields. Commun. Math. Phys. 345, 973–1017 (2016). https://doi.org/10.1007/s00220-016-2606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2606-y

Keywords

Navigation