Skip to main content
Log in

Blow-up of Critical Besov Norms at a Potential Navier–Stokes Singularity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that if an initial datum to the incompressible Navier–Stokes equations in any critical Besov space \({\dot B^{-1+\frac 3p}_{p,q}({\mathbb {R}}^{3})}\), with \({3 < p, q < \infty}\), gives rise to a strong solution with a singularity at a finite time \({T > 0}\), then the norm of the solution in that Besov space becomes unbounded at time T. This result, which treats all critical Besov spaces where local existence is known, generalizes the result of Escauriaza et al. (Uspekhi Mat Nauk 58(2(350)):3–44, 2003) concerning suitable weak solutions blowing up in \({L^{3}({\mathbb R}^{3})}\). Our proof uses profile decompositions and is based on our previous work (Gallagher et al., Math. Ann. 355(4):1527–1559, 2013), which provided an alternative proof of the \({L^{3}({\mathbb R}^{3})}\) result. For very large values of p, an iterative method, which may be of independent interest, enables us to use some techniques from the \({L^{3}({\mathbb R}^{3})}\) setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auscher P., Dubois S., Tchamitchian P.: On the stability of global solutions to Navier–Stokes equations in the space. J. Math. Pures Appl. (9) 83(6), 673–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain J., Pavlović N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255(9), 2233–2247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannone M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13(3), 515–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chemin J.-Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121(2), 314–328 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chemin, J.-Y., Planchon, F.: Self-improving bounds for the Navier–Stokes equations. Bull. Soc. Math. France 140(4), 583–597 (2013) (2012)

  6. Escauriaza, L., Seregin, G.A., Šverák, V.: \({L_{3,\infty}}\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2(350)), 3–44 (2003)

  7. Gallagher I., Iftimie D., Planchon F.: Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 53(5), 1387–1424 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gallagher I.: Profile decomposition for solutions of the Navier–Stokes equations. Bull. Soc. Math. France 129(2), 285–316 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Gallagher I., Koch G.S., Planchon F.: A profile decomposition approach to the \({L^{\infty}_{t}(L^3_x)}\) Navier–Stokes regularity criterion. Math. Ann. 355(4), 1527–1559 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gérard, P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998) (electronic)

  11. Jaffard S.: Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal. 161(2), 384–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kenig C.E., Koch G.S.: An alternative approach to regularity for the Navier–Stokes equations in critical spaces. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28(2), 159–187 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kenig C.E., Merle F.: Scattering for \({\dot H^{1/2}}\) bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans. Am. Math. Soc. 362(4), 1937–1962 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koch G.S.: Profile decompositions for critical Lebesgue and Besov space embeddings. Indiana Univ. Math. J. 59(5), 1801–1830 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  18. Nečas J., Růžička M., Šverák V.: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176(2), 283–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. O’Neil R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Phuc, N.C.: The Navier–Stokes equations in nonendpoint borderline Lorentz spaces. J. Math. Fluid Mech. 17(4), 741–760 (2015). doi:10.1007/s00021-015-0229-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Planchon F.: Asymptotic behavior of global solutions to the Navier–Stokes equations in R 3. Rev. Mat. Iberoam. 14(1), 71–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rusin W., Šverák V.: Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal. 260(3), 879–891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seregin G.: A certain necessary condition of potential blow up for Navier–Stokes equations. Commun. Math. Phys. 312(3), 833–845 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Gallagher.

Additional information

Communicated by W. Schlag

I. Gallagher was partially supported by the A.N.R Grant ANR-12-BS01-0013-01 “Harmonic Analysis at its Boundaries”, as well as the Institut Universitaire de France. G. S. Koch was partially supported by the EPSRC Grant EP/M019438/1, “Analysis of the Navier–Stokes regularity problem”. F. Planchon was partially supported by A.N.R. Grant GEODISP, as well as the Institut Universitaire de France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, I., Koch, G.S. & Planchon, F. Blow-up of Critical Besov Norms at a Potential Navier–Stokes Singularity. Commun. Math. Phys. 343, 39–82 (2016). https://doi.org/10.1007/s00220-016-2593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2593-z

Keywords

Navigation