Skip to main content
Log in

The Steep Nekhoroshev’s Theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Revising Nekhoroshev’s geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev’s theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be \({1/(2n\alpha_1\cdots\alpha_{n-2}}\)) (\({\alpha_i}\)’s being Nekhoroshev’s steepness indices and \({n \ge 3}\) the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benettin G., Fassò F.: Fast rotations of the rigid body: a study by Hamiltonian perturbation theory. Part I. Nonlinearity 9, 137–186 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Benettin G., Fassò F., Guzzo M.: Fast rotations of the rigid body: a study by Hamiltonian perturbation theory. Part II. Nonlinearity 10, 1695–1717 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Benettin G., Fassò F., Guzzo M.: Long term stability of proper rotations of the perturbed Euler rigid body. Commun. Math. Phys. 250, 133–160 (2004)

    Article  ADS  MATH  Google Scholar 

  4. Benettin G., Fassò F., Guzzo M.: Nekhoroshev stability of L4 and L5 in the spatial restricted three body problem. Regul. Chaotic Dyn. 3, 56–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benettin G., Galgani L., Giorgilli A.: A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech. 37, 1–25 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Benettin G., Gallavotti G.: Stability of motions near resonances in quasi-integrable Hamiltonian systems. J. Stat. Phys. 44, 293–338 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bounemoura A., Marco J.P.: Improved exponential stability for near-integrable quasi-convex Hamiltonians. Nonlinearity 24(1), 97–112 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Celletti A., Ferrara L.: An application of Nekhoroshev theorem to the restricted three-body problem. Celest. Mech. Dyn. Astron. 64, 261–272 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chierchia L., Pinzari G.: Planetary Birkhoff normal forms. Jo. Mod. Dyn. 5(4), 623–664 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Fassó F., Guzzo M., Benettin G.: Nekhoroshev-Stability of elliptic equilibria in Hamiltonian systems. Commun. Math. Phys. 197, 347–360 (1998)

    Article  ADS  MATH  Google Scholar 

  11. Gallavotti, G.: Quasi-integrable mechanical systems. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories Les Houches, Session XLIII, 1984. North-Holland, Amsterdam (1986)

  12. Guzzo M., Chierchia L., Benettin G.: The steep Nekhoroshev’s theorem and optimal stability exponents (an announcement). Rendiconti Lincei-Matematica e Applicazioni 25(3), 293–299 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guzzo M., Lega E., Froeschlé C.: Diffusion and stability in perturbed non-convex integrable systems. Nonlinearity 19, 1049–1067 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Guzzo, M., Lega, E., Froeschlé, C.: First numerical investigation of a conjecture by N.N. Nekhoroshev about stability in quasi-integrable systems. Chaos 21(3), 1–13 (2011). (paper 033101)

  15. Guzzo, M., Fassò, F., Benettin, G.: On the stability of elliptic equilibria. Math. Phys. Electron. J. 4, 1–16 (1998). (paper 1)

  16. Lhotka C.H., Efthymiopoulos C., Dvorak R.: Nekhoroshev stability at L 4 or L 5 in the elliptic-restricted three-body problem—application to Trojan asteroid. Mon. Not. R. Astron. Soc. 384(3), 1165–1177 (2008)

    Article  ADS  Google Scholar 

  17. Lochak P.: Canonical perturbation theory via simultaneous approximations. Russ. Math. Surv. 47, 57–133 (1992)

    Article  MathSciNet  Google Scholar 

  18. Lochak, P., Marco, J-P., Sauzin, D: On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems. Memoirs of the AMS, vol. 775 (2003)

  19. Lochak P., Neishtadt A.: Estimates in the theorem of N.N. Nekhoroshev for systems with quasi-convex Hamiltonian. Chaos 2, 495–499 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Morbidelli A., Guzzo M.: The Nekhoroshev theorem and the asteroid belt dynamical system. Celest. Mech. Dyn. Astron. 65, 107–136 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nekhoroshev, N. N.: Stable lower estimates for smooth mappings and for the gradients of smooth functions. Mat. Sb. (N.S.) 90(132), 432–478, 480 (1973). (Russian)

  22. Nekhoroshev N.N.: Exponential estimates of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surv. 32, 1–65 (1977)

    Article  MATH  Google Scholar 

  23. Nekhoroshev N.N.: Exponential estimates of the stability time of near-integrable Hamiltonian systems 2. Trudy Sem. Petrovs. 5, 5–50 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Niederman L.: Stability over exponentially long times in the planetary problem. Nonlinearity 9(6), 1703–1751 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Niederman L.: Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system. Nonlinearity 11, 1465–1479 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Niederman L.: Exponential stability for small perturbations of steep integrable Hamiltonian systems. Ergod. Theory Dyn. Syst. 24(2), 593–608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niederman L.: Prevalence of exponential stability among nearly integrable Hamiltonian systems. Ergodic Theory Dynam. Systems 27(3), 905–928 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niederman, L.: Corrigendum on the article: exponential stability for small perturbations of steep integrable Hamiltonian systems. Ergod. Theory Dyn. Syst. 3(03), 1055–1056, (2014). [Erg. Th. Dyn. Sys., 24, 593–608 (2004)]

  29. Pavlovic R., Guzzo M.: Fulfillment of the conditions for the application of the Nekhoroshev theorem to the Koronis and Veritas asteroid families. Mont. Not. R. Astron. Soc. 384, 1575–1582 (2008)

    Article  ADS  Google Scholar 

  30. Pinzari G.: Aspects of the planetary Birkhoff normal form. Regul. Chaot. Dyn. 18(6), 860–906 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Pöschel J.: Nekhoroshev estimates for quasi-convex hamiltonian systems. Math. Z. 213, 187 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pöschel J.: On Nekhoroshev’s estimate at an elliptic equilibrium. Int. Math. Res. Not. 4, 203–215 (1999)

    Article  Google Scholar 

  33. Sansottera, M., Locatelli, U. Giorgilli, A.: On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system. Math. Comput. Simul. 88, 1–14 (2013)

  34. Todorović N., Guzzo M., Lega E., Froeschlé C.: A numerical study of the stabilization effect of steepness. Celest. Mech. Dyn. Astron. 110, 389–398 (2011)

    Article  ADS  MATH  Google Scholar 

  35. Zhang K.: Speed of Arnold diffusion for analytic Hamiltonian systems. Invent. Math. 186(2), 255–290 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guzzo.

Additional information

Communicated by K. Khanin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzzo, M., Chierchia, L. & Benettin, G. The Steep Nekhoroshev’s Theorem. Commun. Math. Phys. 342, 569–601 (2016). https://doi.org/10.1007/s00220-015-2555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2555-x

Keywords

Navigation