Skip to main content
Log in

Hardy Uncertainty Principle, Convexity and Parabolic Evolutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a new proof of the L 2 version of Hardy’s uncertainty principle based on calculus and on its dynamical version for the heat equation. The reasonings rely on new log-convexity properties and the derivation of optimal Gaussian decay bounds for solutions to the heat equation with Gaussian decay at a future time.We extend the result to heat equations with lower order variable coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonami, A., Demange, B.: A survey on uncertainty principles related to quadratic forms. In: Proceedings of the 7th International Conference on Harmonic Analysis and Partial Differential Equations. Collect. Math. 1–36 (2006)

  2. Bonami A., Demange B., Jaming P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19(1), 23–55 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Cowling, M., Price, J.F.: Generalizations of Heisenberg’s inequality. In: Harmonic Analysis (Cortona, 1982). Lecture Notes in Math., vol. 992, pp. 443–449. Springer, Berlin (1983)

  4. Cowling M., Price J.F.: Bandwidth versus time concentration: the Heisenberg–Pauli–Weyl inequality. SIAM J. Math. Anal. 15, 151–165 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cowling M., Escauriaza L., Kenig C.E., PonceG. Vega L.: The Hardy uncertainty principle revisited. Indiana U. Math. J. 59(6), 2007–2026 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong H., Staubach W.: Unique continuation for the Schrödinger equation with gradient vector potentials. Proc. Am. Math. Soc. 135(7), 2141–2149 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Escauriaza L., Kenig C.E., Ponce G., Vega L.: On uniqueness properties of solutions of Schrödinger equations. Commun. PDE 31(12), 1811–1823 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Escauriaza L., Kenig C.E., Ponce G., Vega L.: Decay at infinity of caloric functionswithin characteristic hyperplanes. Math. Res. Lett. 13(3), 441–453 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escauriaza L., Kenig C.E., Ponce G., Vega L.: Convexity of free solutions of Schrödinger equations with Gaussian decay. Math. Res. Lett. 15(5), 957–971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escauriaza L., Kenig C.E., Ponce G., Vega L.: Hardy’s uncertainty principle, convexity and Schrödinger evolutions. J. Eur. Math. Soc. 10(4), 883–907 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escauriaza L., Kenig C.E., Ponce G., Vega L.: The sharp Hardy uncertainty principle for Schrödinger evolutions. Duke Math. J. 155(1), 163–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escauriaza L., Kenig C.E., Ponce G., Vega L.: Uncertainty principle of Morgan type for Schrdinger evolutions. J. Lond. Math. Soc. 83(1), 187–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Escauriaza L., Kenig C.E., Ponce G., Vega L.: Uniqueness properties of solutions to Schrödinger equations. Bull. (New Ser.) Am. Math. Soc. 49, 415–442 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hardy G.H.: A theorem concerning Fourier transforms. J. Lond. Math. Soc. s 1(8), 227–231 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörmander L.: A uniqueness theorem of Beurling for Fourier transform pairs. Ark. Mat. 29(2), 237–240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ionescu A.D., Kenig C.E.: L p -Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations. Acta Math. 193(2), 193–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ionescu A.D., Kenig C.E.: Uniqueness properties of solutions of Schrödinger equations. J. Funct. Anal. 232, 90–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kenig C.E., Ponce G., Vega L.: On unique continuation for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60, 1247–1262 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Kenig C.E., Ponce G., Vega L.: A theorem of Paley–Wiener type for Schrödinger evolutions. Ann. Sci. Ec. Norm. Sup. 47, 539–557 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Sitaram A., Sundari M., Thangavelu S.: Uncertainty principles on certain Lie groups. Proc. IndianAcad. Sci. Math. Sci. 105, 135–151 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein E.M., Shakarchi R.: Princeton Lecture in Analysis II. Complex Analysis. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  22. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Amer. Math. Soc. (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Escauriaza.

Additional information

L. Escauriaza and L. Vega are supported by the Grants MTM2014-53145-P and IT641-13 (GIC12/96), C. E. Kenig by NSF Grants DMS-0968472 and DMS-1265249. L. Vega is also supported by SEV-2013-0323.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escauriaza, L., Kenig, C.E., Ponce, G. et al. Hardy Uncertainty Principle, Convexity and Parabolic Evolutions. Commun. Math. Phys. 346, 667–678 (2016). https://doi.org/10.1007/s00220-015-2500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2500-z

Keywords

Navigation