Skip to main content

Advertisement

Log in

On the Mean Field and Classical Limits of Quantum Mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The main result in this paper is a new inequality bearing on solutions of the N-body linear Schrödinger equation and of the mean field Hartree equation. This inequality implies that the mean field limit of the quantum mechanics of N identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of C 1,1 interaction potentials. The quantity measuring the approximation of the N-body quantum dynamics by its mean field limit is analogous to the Monge–Kantorovich (or Wasserstein) distance with exponent 2. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13, 115–123, (1979)]. Our approach to this problem is based on a direct analysis of the N-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami R., Golse F., Teta A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127, 1193–1220 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ammari, Z., Falconi, M., Pawilowski, B.: On the rate of convergence for the mean field approximation of many-body quantum dynamics. Commun. Math. Sci. arXiv:1411.6284 (preprint)

  3. Bardos C., Erdös L., Golse F., Mauser N., Yau H.-T.: Derivation of the Schrödinger–Poisson equation from the quantum N-body problem. C. R. Math. Acad. Sci. Paris 334, 515–520 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardos C., Golse F., Mauser N.: Weak coupling limit of the N-particle Schrödinger equation. Method. Appl. Anal. 7, 275–293 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Benedikter N., Porta M., Schlein B.: Mean-field evolution of Fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Braun W., Hepp K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dobrushin R.: Vlasov equations. Funct. Anal. Appl. 13, 115–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdös L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdös L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrdinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Erdös L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172, 291–370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fournier N., Guillin A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Rel. Fields 162(3), 707–738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fröhlich J., Knowles A., Schwarz S.: On the mean-field limit of Bosons with Coulomb two-body interaction. Commun. Math. Phys. 288, 1023–1059 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gérard P., Markowich P., Mauser N., Poupaud F.: Homogenization limit and Wigner transforms. Commun. Pure Appl. Math. 50, 323–379 (1997)

    Article  MATH  Google Scholar 

  14. Graffi S., Martinez A., Pulvirenti M.: Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13, 59–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Golse F., Mouhot C., Ricci V.: Empirical measures and Vlasov hierarchies. Kin. Rel. Models 6, 919–943 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hauray M., Jabin P.-E.: Particle approximation of Vlasov equations with singular forces. Ann. Sci. Ecol. Norm. Sup. 48, 891–940 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Knowles A., Pickl P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298, 101–138 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lazarovici, D.: The Vlasov–Poisson dynamics as the mean-field limit of rigid charges. arXiv:1502.07047 (preprint)

  19. Lazarovici, D., Pickl, P.: A mean-field limit for the Vlasov–Poisson system. arXiv:1502.04608 (preprint)

  20. Lions P.-L., Paul T.: Sur les mesures de Wigner. Rev. Math. Iber. 9, 553–618 (1993)

    Article  MathSciNet  Google Scholar 

  21. Loeper G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pure. Appl. 86, 68–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mischler S., Mouhot C., Wennberg B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probab. Theory Rel. Fields 161, 1–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Narnhofer H., Sewell G.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79, 9–24 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. Neunzert, H., Wick, J.: Die Approximation der Lösung von Integro–Differentialgleichungen durch endliche Punktmengen; Lecture Notes in Math. vol. 395, pp. 275–290, Springer, Berlin (1974)

  25. Pezzotti F., Pulvirenti M.: Mean-field limit and semiclassical expansion of a quantum particle system. Ann. Henri Poincaré 10, 145–187 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Pickl P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97, 151–164 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Pickl P.: Derivation of the time dependent Gross–Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140, 76–89 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291, 31–61 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Spohn H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52, 600–640 (1980)

    Article  MathSciNet  Google Scholar 

  30. Spohn H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3, 445–455 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Villani C.: Topics in Optimal Transportation. American Mathematical Soc, Providence (RI) (2003)

    Book  MATH  Google Scholar 

  32. Villani C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Golse.

Additional information

Communicated by H. Spohn

In memory of Louis Boutet de Monvel (1941–2014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golse, F., Mouhot, C. & Paul, T. On the Mean Field and Classical Limits of Quantum Mechanics. Commun. Math. Phys. 343, 165–205 (2016). https://doi.org/10.1007/s00220-015-2485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2485-7

Keywords

Navigation