Skip to main content
Log in

Characters of the BMS Group in Three Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the Frobenius formula, we evaluate characters associated with certain induced representations of the centrally extended BMS3 group. This computation involves a functional integral over a coadjoint orbit of the Virasoro group; a delta function localizes the integral to a single point, allowing us to obtain an exact result. The latter is independent of the specific form of the functional measure, and holds for all values of the BMS3 central charges and all values of the chosen mass and spin. It can also be recovered as a flat limit of Virasoro characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashtekar, A., Bicak, J., Schmidt, B.G.: Asymptotic structure of symmetry reduced general relativity. Phys.Rev. D55, 669–686 (1997). arXiv:gr-qc/9608042

  2. Barnich, G., Compère, G.: Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions. Class. Q.Grav. 24, F15–F23 (2007). arXiv:gr-qc/0610130

  3. Barnich, G., Troessaert, C.: Aspects of the BMS/CFT correspondence. JHEP 1005, 062 (2010). arXiv:1001.1541

  4. Barnich, G., Oblak, B.: Notes on the BMS group in three dimensions: I. Induced representations. JHEP 1406, 129 (2014). arXiv:1403.5803

  5. Barnich, G., Oblak, B.: Notes on the BMS group in three dimensions: II. Coadjoint representation. JHEP 1503, 033 (2015). arXiv:1502.00010

  6. Wigner E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  7. Mackey, G.W.: Infinite-dimensional group representations. Bull. Amer. Math. Soc. 69, 628–686 (1963)

  8. Mackey, G.: Induced representations of groups and quantum mechanics. Publicazioni della Classe di Scienze della Scuola Normale Superiore di Pisa. W. A. Benjamin (1968)

  9. Mackey, G.: Infinite Dimensional Group Representations and Their Applications. Forschungsinstitut für Mathematik, ETH (1971)

  10. Barut A., Rączka R.: Theory of Group Representations and Applications. World Scientific, Singapore (1986)

    Book  MATH  Google Scholar 

  11. Cornwell, J.: Group theory in physics. Techniques of physics. Academic Press, London (1984)

  12. Lazutkin V., Pankratova T.: Normal forms and versal deformations for Hill’s equation. Funkts. Anal. Prilozh. 9, 41–48 (1975)

    Article  MathSciNet  Google Scholar 

  13. Witten E.: Coadjoint orbits of the Virasoro group. Commun. Math. Phys. 114(1), 1–53 (1988)

    Article  MATH  ADS  Google Scholar 

  14. Balog, J., Feher, L., Palla, L.: Coadjoint orbits of the Virasoro algebra and the global Liouville equation. Int. J. Mod. Phys. A13, 315–362 (1998). arXiv:hep-th/9703045

  15. Guieu, L., Roger, C.: L’Algèbre et le Groupe de Virasoro. Les Publications CRM, Montréal (2007)

  16. Nag S., Verjovsky A.: Diff(S 1) and the Teichmüller spaces. Commun. Math. Phys. 130(1), 123–138 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Kirillov, A., Hewitt, E.: Elements of the Theory of Representations. Grundlehren Der Mathematischen Wissenschaften. Springer London Limited, London (2011)

  18. Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics/Readings in Mathematics. Springer New York (1991)

  19. Joos H., Schrader R.: On the primitive characters of the Poincaré group. Commun. Math. Phys. 7(1), 21–50 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Di Francesco P., Mathieu P., Sénéchal D.: Conformal Field Theory. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  21. Blumenhagen, R., Plauschinn, E.: Introduction to Conformal Field Theory: With Applications to String Theory. Lecture notes in physics. Springer, New York (2009)

  22. Feigin B., Fuks D.: Verma modules over the Virasoro algebra. Funkts. Anal. Prilozh. 17(3), 91–92 (1983)

    MATH  MathSciNet  Google Scholar 

  23. Wassermann, A.: Kac-Moody and Virasoro algebras. ArXiv e-prints (April 2010). arXiv:1004.1287

  24. Wassermann, A.: Direct proofs of the Feigin-Fuchs character formula for unitary representations of the Virasoro algebra. ArXiv e-prints (December 2010). arXiv:1012.6003

  25. Rudin, W.: Real and Complex Analysis. Mathematics Series. McGraw-Hill, New York (1987)

  26. Fuchs G., Renouard P.: Characters of the Poincaré Group. J. Math. Phys. 11(9), 2617–2645 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Weinberg S.: The Quantum Theory of Fields, vol. 1, 1st edn. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  28. Airault H., Malliavin P.: Unitarizing probability measures for representations of Virasoro algebra. J. Math. Pures Appl. 80(6), 627–667 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Airault H.: Mesure unitarisante : algèbre de Heisenberg, algèbre de Virasoro. Comptes Rend. Math. 334, 787–792 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dai J., Pickrell D.: The orbit method and the Virasoro extension of Diff+(S1)—I. Orbital integrals. J. Geom. Phys. 44(4), 623–653 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Shavgulidze E.: A measure that is quasi-invariant with respect to the action of a group of diffeomorphisms of a finite-dimensional manifold. Dokl. Akad. Nauk SSSR 303(4), 811–814 (1988)

    MathSciNet  Google Scholar 

  32. Savgulidze E.: An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle. Funkts. Anal. Prilozh. 12(3), 55–60 (1978)

    MATH  MathSciNet  Google Scholar 

  33. Shavgulidze E.: Mesures quasi-invariantes sur les groupes de difféomorphismes des variétés riemaniennes. C. R. Acad. Sci. Paris 321, 229–232 (1995)

    MATH  MathSciNet  Google Scholar 

  34. Shavgulidze, E.: Quasiinvariant measures on groups of diffeomorphisms. In: Loop spaces and groups of diffeomorphisms. Collected papers, pp. 181–202 (1997). MAIK Nauka/Interperiodica Publishing, Moscow, 1997 (translation from tr. mat. inst. steklova, vol. 217, pp. 189–208)

  35. Bogachev, V.: Gaussian Measures. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998)

  36. Shimomura H.: Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations. J. Funct. Anal. 187(2), 406–441 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Barnich, G.: Entropy of three-dimensional asymptotically flat cosmological solutions. JHEP 1210, 095 (2012). arXiv:1208.4371

  38. Bagchi, A., Detournay, S., Fareghbal, R., Simon, J.: Holography of 3d flat cosmological horizons. Phys. Rev. Lett. 110, 141302 (2013). arXiv:1208.4372

  39. Barnich, G., Troessaert, C.: Supertranslations call for superrotations. PoS CNCFG2010, 010 (2010). arXiv:1102.4632

  40. Barnich, G., Gomberoff, A., González, H. A.: The flat limit of three dimensional asymptotically anti-de Sitter spacetimes. Phys. Rev. D86, 024020 (2012). arXiv:1204.3288

  41. Brown J.D., Henneaux M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Giombi, S., Maloney, A., Yin, X.: One-loop partition functions of 3D gravity. JHEP 0808, 007 (2008). arXiv:0804.1773

  43. Afshar, H., Bagchi, A., Fareghbal, R., Grumiller, D., Rosseel, J.: Spin-3 gravity in three-dimensional flat space. Phys. Rev. Lett. 111(12), 121603 (2013). arXiv:1307.4768

  44. Grumiller, D., Riegler, M., Rosseel, J.: Unitarity in three-dimensional flat space higher spin theories. JHEP 1407, 015 (2014). arXiv:1403.5297

  45. Matulich, J., Perez, A., Tempo, D., Troncoso, R.: Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics. JHEP 1505, 025 (2015). arXiv:1412.1464

  46. Mandal, I.: Supersymmetric Extension of GCA in 2d. JHEP 1011, 018 (2010). arXiv:1003.0209

  47. Barnich, G., Donnay, L., Matulich, J., Troncoso, R.: Asymptotic symmetries and dynamics of three-dimensional flat supergravity. JHEP 1408, 071 (2014). arXiv:1407.4275

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blagoje Oblak.

Additional information

Communicated by N. A. Nekrasov

Research Fellow of the Fund for Scientific Research-FNRS Belgium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oblak, B. Characters of the BMS Group in Three Dimensions. Commun. Math. Phys. 340, 413–432 (2015). https://doi.org/10.1007/s00220-015-2408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2408-7

Keywords

Navigation