Skip to main content
Log in

Product Vectors in the Ranges of Multi-Partite States with Positive Partial Transposes and Permanents of Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider a system of homogeneous algebraic equations in complex variables and their conjugates, which arise naturally from the range criterion for separability of PPT states. We examine systematically these equations to get sufficient conditions for the existence of nontrivial solutions. This gives us possible upper bounds of ranks of PPT entangled edge states and their partial transposes. We will focus on the multi-partite cases, which are much more delicate than the bi-partite cases. We use the notion of permanents of matrices as well as techniques from algebraic geometry through the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acín A., Bruß D., Lewenstein M., Sapera A.: Classification of mixed three-qubit states. Phys. Rev Lett. 87, 040401 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Choi, M.-D.: Positive linear maps, Operator Algebras and Applications (Kingston, 1980), Proc. Sympos. Pure Math. vol 38, part 2, pp. 583–590. Amer. Math. Soc. (1982)

  3. Eom M.-H., Kye S.-H.: Duality for positive linear maps in matrix algebras. Math. Scand. 86, 130–142 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Gharibian S.: Strong NP-hardness of the quantum separability problem. Quantum Inf. Comput. 10, 343–360 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994) (Reprint of the 1978 original)

  6. Gurvits L. Classical deterministic complexity of Edmonds’ Problem and quantum entanglement. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, ACM, pp. 10–19

  7. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York, Heidelberg (1977)

  8. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) (English summary)

  9. Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics, vol. 33. Springer, New York, Heidelberg (1976)

  10. Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Horodecki M., Horodecki P., Horodecki R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature?. Phys. Rev. Lett. 80, 5239–5242 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Horodecki P.: Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A 232, 333–339 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Horodecki P., Lewenstein M., Vidal G., Cirac I.: Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A 62(3), 032310 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Karnas S., Lewenstein M.: Separability and entanglement in \({\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^N}\) composite quantum systems. Phys. Rev. A 64, 042313 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kiem Y.-H., Kye S.-H., Lee J.: Existence of product vectors and their partial conjugates in a pair of spaces. J. Math. Phys. 52, 122201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kraus B., Cirac J.I., Karnas S., Lewenstein M.: Separability in 2\({\times}\)N composite quantum systems. Phys. Rev. A 61, 062302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kräuter A.R., Seifter N.: On some questions concerning permanents of (1, −1)-matrices. Isr. J. Math. 45, 53–62 (1983)

    Article  MATH  Google Scholar 

  18. Kye S.-H.: Facial structures for various notions of positivity and applications to the theory of entanglement. Rev. Math. Phys. 25, 1330002 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kye S.-H., Osaka H.: Classification of bi-qutrit positive partial transpose entangled edge states by their ranks. J. Math. Phys. 53, 052201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lewenstein M., Kraus B., Cirac J., Horodecki P.: Optimization of entanglement witness. Phys. Rev. A 62, 052310 (2000)

    Article  ADS  Google Scholar 

  21. MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes, vol. 16. North-Holland mathematical library, North-Holland (1977)

    Google Scholar 

  22. Minc H.: Permanents. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  23. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Simion R., Schmidt F.W.: On (+1, −1)-matrices with vanishing permanent. Discret. Math. 46, 107–108 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Størmer E.: Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963)

    Article  MathSciNet  Google Scholar 

  26. Tao T., Vu V.: On the permanent of random Bernoulli matrices. Adv. Math. 220, 657–669 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. van Vint J.H.: Introduction to Coding Theory, 3/e, Graduate Texts Math. vol. 86. Springer, New York (1992)

    Book  Google Scholar 

  28. Walgate J., Scott A. J.: Generic local distinguishability and completely entangled subspaces. J. Phys. A 41, 375305 (2008)

    Article  MathSciNet  Google Scholar 

  29. Wang E.T.-H.: On permanents of (1, −1)-matrices. Isr. J. Math. 18, 353–361 (1974)

    Article  Google Scholar 

  30. Wanless I.M.: Permanents of matrices of signed ones. Linear Multilinear Algebra 53, 427–433 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wei T.-C., Severini S.: Matrix permanents and quantum entanglement of permutation invariant states. J. Math. Phys. 51, 092203 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Woronowicz S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10, 165–183 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohan Na.

Additional information

Communicated by M. M. Wolf

YHK and JN were partially supported by NRF Grant 2011-0027969; SHK was partially supported by NRFK Grant 2013-004942.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiem, YH., Kye, SH. & Na, J. Product Vectors in the Ranges of Multi-Partite States with Positive Partial Transposes and Permanents of Matrices. Commun. Math. Phys. 338, 621–639 (2015). https://doi.org/10.1007/s00220-015-2385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2385-x

Keywords

Navigation