Skip to main content
Log in

Generalized Reflection Coefficients

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

I consider general reflection coefficients for arbitrary one-dimensional whole line differential or difference operators of order 2. These reflection coefficients are semicontinuous functions of the operator: their absolute value can only go down when limits are taken. This implies a corresponding semicontinuity result for the absolutely continuous spectrum, which applies to a very large class of maps. In particular, we can consider shift maps (thus recovering and generalizing a result of Last–Simon) and flows of the Toda and KdV hierarchies (this is new). Finally, I evaluate an attempt at finding a similar general setup that gives the much stronger conclusion of reflectionless limit operators in more specialized situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acharya, K.: An alternate proof of the de Branges theorem on canonical systems. ISRN Math. Anal. (2014). doi:10.1155/2014/704607

  2. Breuer J., Ryckman E., Simon B.: Equality of the spectral and dynamical definitions of reflection. Commun. Math. Phys. 295, 531–550 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. de Branges L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs (1968)

    MATH  Google Scholar 

  4. Gesztesy F., Holden H.: Soliton Equations and Their Algebro-Geometric Solutions, (1+1)-Dimensional Continuous Models, Cambridge Studies in Advanced Mathematics, 79, vol. I. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Gesztesy F., Holden H., Michor J., Teschl G.: Soliton Equations and Their Algebro-Geometric Solutions, (1+1)-Dimensional Discrete Models, Cambridge Studies in Advanced Mathematics, 114, vol. II. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  6. Gesztesy F., Nowell R., Pötz W.: One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics. Differ. Integr. Equ. 10, 521–546 (1997)

    MATH  Google Scholar 

  7. Gesztesy F., Simon B.: Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum. Helv. Phys. Acta 70, 66–71 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Gesztesy F., Tsekanovskii E.: On matrix valued Herglotz functions. Math. Nachr. 218, 61–138 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kotani, S.: On limit set of KdV flow: an extension of Remling theorem (preprint). arXiv:1304.6785

  10. Krein M., Smulyan J.: On linear fractional transformations with operator coefficients. Am. Math. Soc. Transl. 103, 125–152 (1974)

    Google Scholar 

  11. Last Y., Simon B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329–367 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Potapov V.P.: The multiplicative structure of J-contractive matrix functions. Am. Math. Soc. Transl. (2) 15, 131–243 (1960)

    MATH  MathSciNet  Google Scholar 

  13. Remling C.: The absolutely continuous spectrum of one-dimensional Schrödinger operators. Math. Phys. Anal. Geom. 10, 359–373 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Remling C.: The absolutely continuous spectrum of Jacobi matrices. Ann. Math. (2) 174, 125–171 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rybkin, A.: On the evolution of a reflection coefficient under the Korteweg–de Vries flow. J. Math. Phys. 49 (2008). doi:10.1063/1.2951897

  16. Teschl G.: Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Monographs and Surveys, 72. American Mathematical Society, Providence (2000)

    Google Scholar 

  17. Winkler H.: The inverse spectral problem for canonical systems. Integr. Equ. Oper. Theory 22, 360–374 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Remling.

Additional information

Communicated by P. Deift

CR’s work has been supported by NSF Grant DMS 1200553.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remling, C. Generalized Reflection Coefficients. Commun. Math. Phys. 337, 1011–1026 (2015). https://doi.org/10.1007/s00220-015-2341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2341-9

Keywords

Navigation