Skip to main content
Log in

A Thermodynamic Formalism Approach to the Selberg Zeta Function for Hecke Triangle Surfaces of Infinite Area

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide an explicit construction of a cross section for the geodesic flow on infinite-area Hecke triangle surfaces, which allows us to conduct a transfer operator approach to the Selberg zeta function. Further, we construct closely related cross sections for the billiard flow on the associated triangle surfaces and endow the arising discrete dynamical systems and transfer operator families with two weight functions, which presumably encode Dirichlet respectively Neumann boundary conditions. The Fredholm determinants of these transfer operator families constitute dynamical zeta functions, which provide a factorization of the Selberg zeta function of the Hecke triangle surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N., Zelditch S.: Patterson-Sullivan distributions and quantum ergodicity. Ann. Henri Poincaré 8(2), 361–426 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Arnoldi, J., Faure, F., Weich, T.: Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps. arXiv:1302.3087 (2013)

  3. Baladi V.: Positive transfer operators and decay of correlations. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  4. Barkhofen S., Faure F., Weich T.: Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum. Nonlinearity 27, 1829–1858 (2014)

    Article  ADS  MATH  Google Scholar 

  5. Barkhofen S., Weich T., PotzuweitA. Stöckmann H.J., Kuhl U., Zworski M.: Experimental observation of the spectral gap in microwave n-disk systems. Phys. Rev. Lett. 110, 164102 (2013)

    Article  ADS  Google Scholar 

  6. Beardon A.: The exponent of convergence of Poincaré series. Proc. Lond. Math. Soc. 18(3), 461–483 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beardon A.: Inequalities for certain Fuchsian groups. Acta Math. 127, 221–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borthwick D.: Spectral theory of infinite-area hyperbolic surfaces. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  9. Borthwick D.: Distribution of resonances for hyperbolic surfaces. Exp. Math. 23(1), 25–45 (2014)

  10. Bourgain, J.: Some Diophantine applications of the theory of group expansion. Thin groups and superstrong approximation, MSRI Publ. 61, pp. 1–22 (2013)

  11. Bourgain J., Kontorovich A.: On Zaremba’s conjecture. Ann. Math. 180(2), 1–60 (2014)

    MathSciNet  Google Scholar 

  12. Bruggeman, R., Lewis, J., Zagier, D.: Period functions for Maass wave forms. II: cohomology. To appear in Memoirs of the AMS (2013)

  13. Bunke U., Olbrich M.: Selberg zeta and theta functions. A differential operator approach. Akademie Verlag, Berlin (1995)

    MATH  Google Scholar 

  14. Chang, C., Mayer, D.: Eigenfunctions of the transfer operators and the period functions for modular groups. Contemp. Math., vol. 290. (pp. 1–40) Am. Math. Soc., Providence (2001)

  15. Chang, C., Mayer, D.: An extension of the thermodynamic formalism approach to Selberg’s zeta function for general modular groups. In: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 523–562. Springer, Berlin (2001)

  16. Deitmar, A.: Selberg zeta functions for spaces of higher rank. arXiv:math/0209383 (2002)

  17. Deitmar A., Hilgert J.: A Lewis correspondence for submodular groups. Forum Math. 19(6), 1075–1099 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Efrat I.: Dynamics of the continued fraction map and the spectral theory of SL(2,Z). Invent. Math. 114(1), 207–218 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Fischer, J.: An approach to the Selberg trace formula via the Selberg zeta-function. Springer Lecture Notes in Mathematics, vol. 1253 (1987)

  20. Fraczek M., Mayer D., Mühlenbruch T.: A realization of the Hecke algebra on the space of period functions for Γ0(n). J. Reine Angew. Math. 603, 133–163 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Fried D.: Symbolic dynamics for triangle groups. Invent. Math. 125(3), 487–521 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Gaspard P., Rice S.: Semiclassical quantization of the scattering from a classically chaotic repeller. J. Chem. Phys. 90(4), 2242–2254 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Guillopé, L.: Fonctions zêta de Selberg et surfaces de géométrie finie. Zeta functions in geometry, pp. 33–70. Kinokuniya Company Ltd., Tokyo (1992)

  24. Guillopé L., Lin K., Zworski M.: The Selberg zeta function for convex co-compact Schottky groups. Commun. Math. Phys. 245(1), 149–176 (2004)

    Article  ADS  MATH  Google Scholar 

  25. Hejhal, D.: The Selberg trace formula for PSL(2, R). Vol. I. Springer Lecture Notes in Mathematics, vol. 548, (1976)

  26. Hejhal, D.: The Selberg trace formula for PSL(2, R). Vol. 2. Springer Lecture Notes in Mathematics, vol. 1001 (1983)

  27. Hilgert, J., Pohl, A.: Symbolic dynamics for the geodesic flow on locally symmetric orbifolds of rank one. In: Proceedings of the Fourth German-Japanese Symposium on Infinite Dimensional Harmonic Analysis IV, pp. 97–111. World Scientific, Hackensack (2009)

  28. Judge C.: On the existence of Maass cusp forms on hyperbolic surfaces with cone points. J. Am. Math. Soc. 8(3), 715–759 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lalley S.: Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits. Acta Math. 163(1–2), 1–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lewis J.: Spaces of holomorphic functions equivalent to the even Maass cusp forms. Invent. Math. 127, 271–306 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Lewis J., Zagier D.: Period functions for Maass wave forms. I. Ann. Math. (2) 153(1), 191–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lu W.T., Sridhar S., Zworski Maciej: Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett. 91, 154101 (2003)

    Article  ADS  Google Scholar 

  33. Mayer D.: On the thermodynamic formalism for the Gauss map. Commun. Math. Phys. 130(2), 311–333 (1990)

    Article  ADS  MATH  Google Scholar 

  34. Mayer, D.: The thermodynamic formalism approach to Selberg’s zeta function for PSL(2,Z). Bull. Am. Math. Soc. (N.S.) 25(1), 55–60 (1991)

  35. Mayer D., Mühlenbruch T., Strömberg F.: The transfer operator for the Hecke triangle groups. Discret. Contin. Dyn. Syst. Ser. A 32(7), 2453–2484 (2012)

    Article  MATH  Google Scholar 

  36. Möller M., Pohl A.: Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant. Ergod. Theory Dyn. Syst. 33(1), 247–283 (2013)

    Article  MATH  Google Scholar 

  37. Morita T.: Markov systems and transfer operators associated with cofinite Fuchsian groups. Ergod. Theory Dyn. Syst. 17(5), 1147–1181 (1997)

    Article  MATH  Google Scholar 

  38. Naud F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. Sci. Éc. Norm. Supér. (4) 38(1), 116–153 (2005)

    MATH  MathSciNet  Google Scholar 

  39. Naud F.: Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces. Int. Math. Res. Not. 2005(5), 299–310 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Naud F.: Density and location of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 195(3), 723–750 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Parry W., Pollicott M.: An analogue of the prime number theorem for closed orbits of Axiom A flows. Ann. Math. 118(2), 573–591 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  42. Patterson S.: The limit set of a Fuchsian group. Acta Math. 136, 241–273 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  43. Phillips R.S., Sarnak P.: On cusp forms for co-finite subgroups of PSL(2, R). Invent. Math. 80(2), 339–364 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Phillips R.S., Sarnak P.: The Weyl theorem and the deformation of discrete groups. Commun. Pure Appl. Math. 38(6), 853–866 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pohl, A.: Symbolic dynamics for the geodesic flow on locally symmetric good orbifolds of rank one. Dissertation thesis, University of Paderborn. http://d-nb.info/gnd/137984863 (2009)

  46. Pohl A.: A dynamical approach to Maass cusp forms. J. Mod. Dyn. 6(4), 563–596 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. Pohl A.: Period functions for Maass cusp forms for Γ0(p): A transfer operator approach. Int. Math. Res. Not. 14, 3250–3273 (2013)

    MathSciNet  Google Scholar 

  48. Pohl, A.: Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow. To appear in Ergod. Theory Dyn. Syst. (2014)

  49. Pohl A.: Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discret. Contin. Dyn. Syst. Ser. A 34(5), 2173–2241 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  50. Pollicott M.: Some applications of thermodynamic formalism to manifolds with constant negative curvature. Adv. Math. 85, 161–192 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  51. Pollicott M., Sharp R.: Exponential error terms for growth functions on negatively curved surfaces. Am. J. Math. 120(5), 1019–1042 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  52. Pollicott M., Sharp R.: Error terms for closed orbits of hyperbolic flows. Ergod. Theory Dyn. Syst. 21(2), 545–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  53. Potzuweit A., Weich T., Barkhofen S., Kuhl U., Stöckmann H.-J., Zworski M.: Weyl asymptotics: from closed to open systems. Phys. Rev. E 86, 066205 (2012)

    Article  ADS  Google Scholar 

  54. Ruelle D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34(3), 231–242 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Ruelle, D.: Thermodynamic formalism. In: Encyclopedia of Mathematics and its Applications, vol. 5. Addison-Wesley Publishing Co., Reading (1978)

  56. Schomerus H., Tworzydło J.: Quantum-to-classical crossover of quasibound states in open quantum systems. Phys. Rev. Lett. 93, 154102 (2004)

    Article  ADS  Google Scholar 

  57. Selberg, A.: Göttingen lectures. http://publications.ias.edu/selberg (1954)

  58. Selberg A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. New Ser. 20, 47–87 (1956)

    MATH  MathSciNet  Google Scholar 

  59. Stoyanov, L.: Ruelle transfer operators for contact Anosov flows and decay of correlations. arXiv:1301.6855 (2013)

  60. Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Publ. Math. Inst. Hautes Étud. Sci. 50, 171–202 (1979)

    Article  MATH  Google Scholar 

  61. Venkov, A.: Spectral theory of automorphic functions. Proc. Steklov Inst. Math. (1982), no. 4 (153), pp. ix+163. A translation of Trudy Mat. Inst. Steklov. 153 (1981)

  62. Weich, T.: Resonance chains and geometric limits on Schottky surfaces. arXiv:1403.7419 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke D. Pohl.

Additional information

Communicated by S. Zelditch

The author acknowledges the support by the Volkswagen Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohl, A.D. A Thermodynamic Formalism Approach to the Selberg Zeta Function for Hecke Triangle Surfaces of Infinite Area. Commun. Math. Phys. 337, 103–126 (2015). https://doi.org/10.1007/s00220-015-2304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2304-1

Keywords

Navigation