Skip to main content

Advertisement

Log in

Asymptotics of Linear Waves and Resonances with Applications to Black Holes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe asymptotic behavior of linear waves on Kerr(–de Sitter) black holes and more general Lorentzian manifolds, providing a quantitative analysis of the ringdown phenomenon. In particular we prove that if the initial data is localized at frequencies \({\sim \lambda \gg 1}\), then the energy norm of the solution is bounded by \({\mathcal{O}(\lambda^{1/2} e^{-(\nu_{\min}-\varepsilon)t/2}) + \mathcal{O}(\lambda^{-\infty}), \,\,{\rm for}\,\, t \leq C \log \lambda, \,\,{\rm where}\,\, \nu_{\min}}\) is a natural dynamical quantity. The key tool is a microlocal projector splitting the solution into a component with controlled rate of exponential decay and an \({\mathcal{O}(\lambda e^{-(\nu_{\min}-\varepsilon)t}) + \mathcal{O}(\lambda^{-\infty})}\) remainder. This splitting generalizes expansions into quasi-normal modes available in completely integrable settings. In the case of generalized Kerr(–de Sitter) black holes satisfying certain natural conditions, quasi-normal modes are localized in bands and satisfy a precise counting law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcay S., Matzner R.A.: The Kerr–de Sitter universe. Class. Quantum Gravity 28, 085012 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime (preprint). arXiv:0908.2265

  3. Aretakis S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307(1), 17–63 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Aretakis S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 12(8), 1491–1538 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Aretakis S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263(9), 2770–2831 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berti E., Cardoso V., Starinets A.: Quasinormal modes of black holes and black branes. Class. Quantum Gravity 26, 163001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation on the de Sitter–Schwarzschild metric. Commun. Math. Phys. 282, 697–719 (2008)

    Article  ADS  MATH  Google Scholar 

  9. Carter B.: Hamilton–Jacobi and Schrödinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280–310 (1968)

    MATH  Google Scholar 

  10. Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild–de Sitter spacetimes (preprint). arXiv:0709.2766

  11. Dafermos, M., Rodnianski, I.: Lectures on Black Holes and Linear Waves. Clay Mathematics Proceedings, vol. 17, pp. 97–205. American Mathematical Society, Providence (2013). arXiv:0811.0354

  12. Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior space-times I–II: the cases of \({|a| \ll M}\) or axisymmetry (preprint). arXiv:1010.5132

  14. Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185(3), 467–559 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Proceedings of the 12 Marcel Grossmann Meeting (2012). arXiv:1010.5137

  16. Datchev K.: Local smoothing for scattering manifolds with hyperbolic trapped sets. Commun. Math. Phys. 286(3), 837–850 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Datchev, K., Vasy, A.: Gluing semiclassical resolvent estimates via propagation of singularities. Int. Math. Res. Not. 23, 5409–5443 (2012)

  18. Donninger R., Schlag W., Soffer A.: A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math. 226(1), 484–540 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Donninger R., Schlag W., Soffer A.: On pointwise decay of linear waves on a Schwarzschild black hole background. Commun. Math. Phys. 309(1), 51–86 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Dyatlov S.: Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole. Commun. Math. Phys. 306, 119–163 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Dyatlov S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. 18, 1023–1035 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dyatlov S.: Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes. Ann. Henri Poincaré 13, 1101–1166 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Dyatlov, S.: Resonance projectors and asymptotics for r-normally hyperbolic trapped sets. J Am. Math. Soc. 28(2), 311–381 (2015)

  24. Dyatlov, S., Guillarmou, C.: Microlocal limits of plane waves and Eisenstein functions. Ann. de l’ENS 47(2) (2014). arXiv:1204.1305

  25. Dyatlov S., Zworski M.: Trapping of waves and null geodesics for rotating black holes. Phys. Rev. D 88, 084037 (2013)

    Article  ADS  Google Scholar 

  26. Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Erratum: “Decay of solutions of the wave equation in the Kerr geometry” [Commun. Math. Phys. 264(2), 465–503 (2006)] Commun. Math. Phys. 280(2), 563–573 (2008)

  28. Gannot, O.: Quasinormal modes for AdS–Schwarzschild black holes: exponential convergence to the real axis. Commun. Math. Phys. 330, 771–799 (2014). arXiv:1212.1907

  29. Hod, S.: Resonance spectrum of near-extremal Kerr black holes in the eikonal limit. Phys. Lett. B 715, 348 (2012)

  30. Holzegel, G., Smulevici, J.: Decay properties of Klein–Gordon fields on Kerr–AdS spacetimes (preprint). arXiv:1110.6794

  31. Holzegel, G., Smulevici, J.: Quasimodes and a lower bound on the uniform energy decay rate for Kerr–AdS spacetimes (preprint). arXiv:1303.5944

  32. Hörmander L.: The Analysis of Linear Partial Differential Operators. III Pseudo-Differential Operators. Springer, Berlin (1994)

    Google Scholar 

  33. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

  34. Kay B.S., Wald R.M.: Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere. Class. Quantum Gravity 4, 893 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Kokkotas K.D., Schmidt B.: Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  36. Luk J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11(5), 805–880 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Luk J.: A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole. Anal. PDE 5(3), 553–625 (2015)

    Article  MathSciNet  Google Scholar 

  38. Marzuola J., Metcalfe J., Tataru D., Tohaneanu M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys. 293(1), 37–83 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Melrose, R.: Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidean Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 161. Dekker, New York (1994)

  40. Melrose, R., Sá Barreto, A., Vasy, A.: Asymptotics of solutions of the wave equation on de Sitter–Schwarzschild space (preprint). arXiv:0811.2229

  41. Metcalfe J., Tataru D., Tohaneanu M.: Price’s law on nonstationary space-times. Adv. Math. 230(3), 995–1028 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Risaliti G., Harrison F.A., Madsen K.K., Walton D.J., Boggs S.E., Christensen F.E., Craig W.W., Grefenstette B.W., Hailey C.J., Nardini E., Stern D., Zhang W.W.: A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 494, 449–451 (2013)

    Article  ADS  Google Scholar 

  43. SáBarreto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4, 103–121 (1997)

    Article  MathSciNet  Google Scholar 

  44. Shlapentokh-Rothman, Y.: Exponentially growing finite energy solutions for the Klein–Gordon equation on sub-extremal Kerr spacetimes. Commun. Math. Phys. 329(3), 859–891 (2014). arXiv:1302.3448

  45. Shlapentokh-Rothman, Y.: Quantitative mode stability for the wave equation on the Kerr spacetime. Ann. Henri Poincare. arXiv:1302.6902

  46. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135(2), (2013). arXiv:0910.5290

  47. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2011(2), 248–292 (2011)

  48. Taylor M.: Partial Differential Equations I. Basic Theory. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  49. Tohaneanu M.: Strichartz estimates on Kerr black hole backgrounds. Trans. Am. Math. Soc. 364(2), 689–702 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  50. Vasy A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces, with an appendix by Semyon Dyatlov. Invent. Math. 194(2), 381–513 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Vasy A., Zworski M.: Semiclassical estimates in asymptotically Euclidean scattering. Commun. Math. Phys. 212(1), 205–217 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Yang H., Nichols D., Zhang F., Zimmerman A., Zhang Z., Chen Y.: Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation. Phys. Rev. D 86, 104006 (2012)

    Article  ADS  Google Scholar 

  53. Yang H., Zhang F., Zimmerman A., Chen Y.: The scalar Green function of the Kerr spacetime. Phys. Rev. D 89, 064014 (2014)

    Article  ADS  Google Scholar 

  54. Yang H., Zhang F., Zimmerman A., Nichols D., Berti E., Chen Y.: Branching of quasinormal modes for nearly extremal Kerr black holes. Phys. Rev. D 87, 041502 (2013)

    Article  ADS  Google Scholar 

  55. Wald R.M.: Note on the stability of the Schwarzschild metric. J. Math. Phys. 20, 1056 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  56. Wunsch J., Zworski M.: Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré 12(7), 1349–1385 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. AMS, Providence (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Dyatlov.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyatlov, S. Asymptotics of Linear Waves and Resonances with Applications to Black Holes. Commun. Math. Phys. 335, 1445–1485 (2015). https://doi.org/10.1007/s00220-014-2255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2255-y

Keywords

Navigation