Skip to main content
Log in

Scattering Resonances of Convex Obstacles for General Boundary Conditions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the distribution of resonances for smooth strictly convex obstacles under general boundary conditions. We show that under a pinched curvature condition for the boundary of the obstacle, the resonances are separated into cubic bands and the distribution in each band satisfies Weyl’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22, 269–279 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Balslev E., Combes J.M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys. 22, 280–294 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Babich V.M., Grigoreva N.S.: The analytic continuation of the resolvent of the exterior three-dimensional problem for the Laplace operator to the second sheet. Funktsional. Anal. i Prilozhen. 8, 71–74 (1974)

    Article  Google Scholar 

  4. Bardos C., Lebeau G., Rauch J.: Scattering frequencies and Gevrey 3 singularities. Invent. Math. 90, 77–114 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Boutet de Monvel L., Kree P.: Pseudodifferential operators and Gevrey classes. Ann. Inst. Fourier 17, 295–323 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268. Cambridge University Press, Cambridge (1999)

  7. Filippov V.B., Zayaev A.B.: Rigorous justification of the asymptotic solutions of sliding wave type. J. Sov. Math. 30, 2395–2406 (1985)

    Article  MATH  Google Scholar 

  8. Hargé T., Lebeau G.: Diffraction par un convexe. Invent. Math. 118, 161–196 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Heffler B., Sjöstrand J.: Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.), vol. 24/25. Bordas, Paris (1986)

    Google Scholar 

  10. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I–IV. Springer, Berlin (1983–1985)

  11. Jin L.: Resonance-free region in scattering by a strictly convex obstacle. Ark. Mat. 52, 257–289 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lax P., Phillips R.: Scattering Theory. Academic Press, New York (1967)

    MATH  Google Scholar 

  13. Lax P., Phillips R.: Decaying modes for the wave equation in the exterior of an obstacle. Commun. Pure Appl. Math. 22, 737–787 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lax P., Phillips R.: A logarithmic bound on the location of the poles of the scattering. Mat. Arch. Ration. Mech. Anal. 40, 268–280 (1971)

    ADS  MATH  MathSciNet  Google Scholar 

  15. Lebeau G.: Régularité Gevrey 3 pour la diffraction. Commun. Partial Differ. Equ. 9, 1437–1494 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martinez A.: An Introduction to Semiclassical and Microlocal Analysis. Universitext. Springer, New York (2002)

    Book  Google Scholar 

  17. Melrose, R.B.: Polynomial bound on the distribution of poles in scattering by an obstacle. In: Journée “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1984), Exp. No. II. Soc. Math. France, Paris (1984)

  18. Melrose R.B.: Geometric Scattering Theory, Stanford Lectures. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  19. Morawetz C.S., Ralston J.V., Strauss W.A.: Decay of solutions of the wave equation outside nontrapping obstacles. Commun. Pure Appl. Math. 30, 447–508 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Popov G.: Some estimates of Green’s functions in the shadow. Osaka J. Math. 24, 1–12 (1987)

    MATH  MathSciNet  Google Scholar 

  21. Sjöstrand J.: Singularité analytiques microlocales, Astérisque, vol. 95. Soc. Math. France, Paris (1982)

    Google Scholar 

  22. Sjöstrand J.: Density of resonances for strictly convex analytic obstacles. With an appendix by M. Zworski. Can. J. Math. 48, 397–447 (1996)

    Article  MATH  Google Scholar 

  23. Stefanov P.: Sharp upper bounds on the number of the scattering poles. J. Funct. Anal. 231(1), 111–142 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sjöstrand J., Zworski M.: Complex scaling and the distribution of scattering poles. J. Am. Math. Soc. 4, 729–769 (1991)

    Article  MATH  Google Scholar 

  25. Sjöstrand J., Zworski M.: Lower bounds on the number of scattering poles. Commun. Partial Differ. Equ. 18, 847–858 (1993)

    Article  MATH  Google Scholar 

  26. Sjöstrand J., Zworski M.: Lower bounds on the number of scattering poles, II. J. Funct. Anal. 123, 336–367 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sjöstrand J., Zworski M.: Estimates on the number of scattering poles for strictly convex obstacles near the real axis. Ann. Inst. Fourier (Grenoble) 43, 769–790 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sjöstrand J., Zworski M.: The complex scaling method for scattering by strictly convex obstacles. Ark. Mat. 33, 135–172 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sjöstrand J., Zworski M.: Asymptotic distribution of resonances for convex obstacles. Acta Math. 183, 191–253 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sjöstrand J., Zworski M.: Elementary linear algebra for advanced spectral problems. Ann. Inst. Fourier Grenoble 57, 2095–2141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vodev G.: Sharp bounds on the number of scattering poles in even-dimensional spaces. Duke Math. J. 74, 1–17 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Watson G.N.: Diffraction of electric waves by the Earth. Proc. R. Soc. (Lond.) A95, 83–99 (1918)

    Article  ADS  Google Scholar 

  33. Zworski, M.: Couting scattering poles. In: Spectral and Scattering Theory (Sanda, 1992), pp. 301–331. Lecture Notes in Pure and Applied Mathematics, vol. 161. Dekker, New York (1994)

  34. Zworski M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. AMS, Providence (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jin.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L. Scattering Resonances of Convex Obstacles for General Boundary Conditions. Commun. Math. Phys. 335, 759–807 (2015). https://doi.org/10.1007/s00220-014-2250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2250-3

Keywords

Navigation