Skip to main content
Log in

Discrete Pluriharmonic Functions as Solutions of Linear Pluri-Lagrangian Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Pluri-Lagrangian systems are variational systems with the multi-dimensional consistency property. This notion has its roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics, in the theory of variational symmetries going back to Noether and in the theory of discrete integrable systems. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form L on an m-dimensional space, m > d, whose coefficients depend on a function u of m independent variables (called field), find those fields u which deliver critical points to the action functionals \({S_\Sigma=\int_\Sigma L}\) for any d-dimensional manifold Σ in the m-dimensional space. We investigate discrete 2-dimensional linear pluri-Lagrangian systems, i.e., those with quadratic Lagrangians L. The action is a discrete analogue of the Dirichlet energy, and solutions are called discrete pluriharmonic functions. We classify linear pluri-Lagrangian systems with Lagrangians depending on diagonals. They are described by generalizations of the star-triangle map. Examples of more general quadratic Lagrangians are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adler V.E., Bobenko A.I., Suris Yu.B.: Classification of integrable equations on quad-graphs: the consistency approach. Commun. Math. Phys. 233, 513–543 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Adler V.E., Bobenko A.I., Suris Yu.B.: Classification of integrable discrete equations of octahedron type. Intern. Math. Res. Not. 2012(Nr. 8), 1822–1889 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Baxter R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. R. Soc. Lond. Ser. A 289, 315–346 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  4. Baxter R.J.: Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. R. Soc. Lond. A 404, 1–33 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bazhanov V.V., Mangazeev V.V., Sergeev S.M.: Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal geometry. Nucl. Phys. B 784, 234–258 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bazhanov V.V., Mangazeev V.V., Sergeev S.M.: A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations. Adv. Theor. Math. Phys. 16, 65–95 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bobenko A.I., Mercat Ch., Suris Yu.B.: Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bobenko A.I., Suris Yu.B.: Integrable systems on quad-graphs. Intern. Math. Res. Not. 2002(Nr. 11), 573–611 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bobenko, A.I., Suris, Yu.B.: Discrete Differential Geometry: Integrable Structures. Graduate Studies in Mathematics, AMS, vol. 98 (2008)

  10. Bobenko A.I., Suris Yu.B.: On the Lagrangian structure of integrable quad-equations. Lett. Math. Phys. 92, 17–31 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Boll, R., Petrera, M., Suris, Yu.B.: What is integrability of discrete variational systems? Proc. R. Soc. A 470, No. 2162, 20130550, p. 15 (2014)

  12. Boll R., Suris Yu.B.: On the Lagrangian structure of 3D consistent systems of asymmetric quad-equations. J. Phys. A Math. Theor. 45, 115201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. Burstall F., Ferus D., Pedit F., Pinkall U.: Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras. Ann. Math. 138, 173–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chelkak D., Smirnov S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228(3), 1590–1630 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kenyon R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Kuznetsov V.B., Sklyanin E.K.: On Bäcklund transformations for many-body systems. J. Phys. A Math. Gen. 31, 2241–2251 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Lobb S., Nijhoff F.W.: Lagrangian multiforms and multidimensional consistency. J. Phys. A Math. Theor. 42, 454013 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lobb S.B., Nijhoff F.W.: Lagrangian multiform structure for the lattice Gel’fand–Dikij hierarchy. J. Phys. A Math. Theor. 43, 072003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lobb S.B., Nijhoff F.W., Quispel G.R.W.: Lagrangian multiform structure for the lattice KP system. J. Phys. A Math. Theor. 42, 472002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mercat Ch.: Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218(1), 177–216 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Mercat, Ch.: Discrete complex structure on surfel surfaces, In: Discrete geometry for computer imagery, Lecture Notes Computer Science, vol. 4992, pp. 153–164. Springer, Berlin (2008)

  22. Nijhoff F.W.: Lax pair for the Adler (lattice Krichever–Novikov) system. Phys. Lett. A 297, 49–58 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Noether, E.: Invariante Variationsprobleme, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Kl. 1918, 235–257 (1918)

  24. Ohnita Y., Valli G.: Pluriharmonic maps into compact Lie groups and factorization into unitons. Proc. Lond. Math. Soc. 61, 546–570 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rudin, W.: Function theory in the unit ball of \({\mathbb{C}^{n}}\) . Grundlehren der Mathematischen Wissenschaften, vol. 241. New York-Heidelberg-Berlin: Springer (1980)

  26. Sergeev S.M.: Solitons in a 3d integrable model. Phys. Lett. A 265, 364–368 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Sergeev S.M.: On exact solution of a classical 3d integrable model. J. Nonlin. Math. Phys. 7, 57–72 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Skopenkov M.: The boundary value problem for discrete analytic functions. Adv. Math. 240, 61–87 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Suris Yu.B.: Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geom. Mech. 5, 365–379 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Suris, Yu.B.: Variational symmetries and pluri-Lagrangian systems. arXiv:1307.2639 [math-ph]

  31. Xenitidis P., Nijhoff F., Lobb S.: On the Lagrangian formulation of multidimensionally consistent systems. Proc. R. Soc. A 467, 3295–3317 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Suris.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobenko, A.I., Suris, Y.B. Discrete Pluriharmonic Functions as Solutions of Linear Pluri-Lagrangian Systems. Commun. Math. Phys. 336, 199–215 (2015). https://doi.org/10.1007/s00220-014-2240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2240-5

Keywords

Navigation