Skip to main content
Log in

Effective Limiting Absorption Principles, and Applications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The limiting absorption principle asserts that if H is a suitable Schrödinger operator, and f lives in a suitable weighted L 2 space (namely \({H^{0, 1/2 + \sigma}}\) for some \({\sigma > 0}\)), then the functions \({R(\lambda + i \varepsilon) f := (H - \lambda - i \varepsilon)^{-1} f}\) converge in another weighted L 2 space \({H^{0, -1/2 - \sigma}}\) to the unique solution u of the Helmholtz equation \({(H - \lambda) u = f}\) which obeys the Sommerfeld outgoing radiation condition. In this paper, we investigate more quantitative (or effective) versions of this principle, for the Schrödinger operator on asymptotically conic manifolds with short-range potentials, and in particular consider estimates of the form

$$\| R(\lambda + i \varepsilon) f \|_{H^{0, -1/2 - \sigma}} \leq C(\lambda, H) \| f \|_{H^{0, 1/2 + \sigma}}.$$

We are particularly interested in the exact nature of the dependence of the constants \({C(\lambda, H)}\) on both \({\lambda}\) and H. It turns out that the answer to this question is quite subtle, with distinctions being made between low energies \({\lambda \ll 1}\), medium energies \({\lambda \sim 1}\), and large energies \({\lambda \gg 1}\), and there is also a non-trivial distinction between “qualitative” estimates on a single operator H (possibly obeying some spectral condition such as non-resonance, or a geometric condition such as non-trapping), and “quantitative” estimates (which hold uniformly for all operators H in a certain class). Using elementary methods (integration by parts and ODE techniques), we give some sharp answers to these questions. As applications of these estimates, we present a global-in-time local smoothing estimate and pointwise decay estimates for the associated time-dependent Schrödinger equation, as well as an integrated local energy decay estimate and pointwise decay estimates for solutions of the corresponding wave equation, under some additional assumptions on the operator H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Sc. Norm. Sup. Pisa 11, 151–216 (1974)

    Google Scholar 

  2. Amrein W., Georgescu V.: On the characterization of bounded states and scattering states in quantum mechanics. Helv. Phys. Acta 46, 635–658 (1973)

    MathSciNet  Google Scholar 

  3. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. (2009, preprint)

  4. Beceanu, M., Goldberg, M.: Schrödinger dispersive estimates for a scaling-critical class of potentials. (2010, preprint)

  5. Ben-Artzi M., Klainerman S.: Decay and regularity for the Schrödinger equation. J. Anal. Math. 58, 25–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berezanskiĭ, J.M.: Expansions in eigenfunctions of selfadjoint operators. Translations of Mathematical Monographs, vol. 17. AMS, Providence, RI (1968)

  7. Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bouclet, J.M.: Low frequency estimates for long range perturbations in divergence form (2008, preprint)

  9. Bouclet J.M., Tzvetkov N.: Strichartz estimates for long range perturbations. Am. J. Math. 129(6), 1565–1609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouclet J.M., Tzvetkov N.: On global Strichartz estimates for nontrapping metrics. J. Funct. Anal. 254(6), 1661–1682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burq, N.: Décroissance de l’énergie locale de l’équation des ondes pour le probléme extérieur et absence de résonance au voisinage du réel. Acta Math. 180, 1–29 (1998)

  12. Burq, N.: Semi-classical estimates for the resolvent in non trapping geometries. Int. Math. Res. Not. 5, 221–241 (2002)

  13. Burq N.: Lower bounds for shape resonances widths of long range Schrodinger operators. Am. J. Math. 124(4), 677–735 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burq N., Guillarmou C., Hassell A.: Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics. GAFA 20, 627–656 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Burq N., Planchon F., Stalker J., Tahvildar-Zadeh S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burq N., Zworski M.: Bouncing ball modes and quantum chaos. SIAM Rev. 47(1), 43–49 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cardoso F., Vodev G.: Uniform estimates for the resolvent of the Laplace–Beltrami operator on infinite volume Riemannian manifolds, II. Ann. Henri Poincaré 2, 673–691 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cardoso F., Vodev G.: Quasimodes with exponentially small errors associated with elliptic periodic rays. Asymptot. Anal. 30, 217–247 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Cardoso F., Vodev G.: High frequency resolvent estimates and energy decay of solutions to the wave equation. Mat. Contemp. 26, 15–22 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Chavel I.: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984)

    MATH  Google Scholar 

  21. Chernoff P.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Craig W., Kappeler T., Strauss W.: Microlocal dispersive smoothing for the Schrodinger equation. Commun. Pure Appl. Math. 48, 769–860 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Constantin P., Saut J.C.: Effets régularisants locaux pour des équations dispersives générales. C. R. Acad. Sci. Paris. Sér. I. Math. 304, 407–410 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Christianson H.: Dispersive estimates for manifolds with one trapped orbit. Commun. Partial Differ. Equ. 33, 1147–1174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dafermos M., Rodnianski I.: Lectures on black holes and linear waves. Clay Math. Proc. 17, 97–205 (2013)

    MathSciNet  Google Scholar 

  27. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes (2009, preprint)

  28. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: the cases \({|a| \ll M}\) or axisymmetry (2010, preprint)

  29. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations (2010, preprint)

  30. Doi S.: Smoothing effects of Schrödinger evolution groups on Riemannian manifolds. Duke Math. J. 82, 679–706 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Datchev K.: Local smoothing for scattering manifolds with hyperbolic trapped sets. Commun. Math. Phys. 286, 837–850 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Datchev K.: Quantitative limiting absorption principle in the semiclassical limit. Geom. Funct. Anal. 24, 740–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Datchev, K., Vasy, A.: Propagation through trapped sets and semiclassical resolvent estimates. Ann. Inst. Fourier (Grenoble) 62(6), 2347–2377 (2013)

  34. Dyatlov, S.: Resonance projectors and asymptotics for r-normally hyperbolic trapped sets (2013, preprint)

  35. Eidus D.M.: The principle of limiting amplitude. Uspehi Mat. Nauk 24(3(147)), 91–156 (1969)

    MathSciNet  Google Scholar 

  36. Enss V.: Asymptotic completeness for quantum-mechanical potential scattering, I. Short-range potentials. Commun. Math. Phys. 61, 285–291 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Georgiev V., Visciglia N.: Decay estimates for the wave equation with potential. Commum. Partial Differ. Equ. 28(7–8), 1325–1369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Goldberg M., Schlag W.: A limiting absorption principle for the three-dimensional Schrödinger equation with L p potentials. Int. Math. Res. Not. 75, 4049–4071 (2004)

    Article  MathSciNet  Google Scholar 

  39. Guillarmou C., Hassell A.: The resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds, Part I. Math. Ann. 341(4), 859–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Guillarmou C., Hassell A.: The resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds, Part II. Ann. Inst. Fourier 59, 1553–1610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hassell A., Melrose R.B., Vasy A.: Spectral and scattering theory for symbolic potentials of order zero. Adv. Math. 181, 1–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hassell A., Tao T.: Upper and lower bounds for Dirichlet eigenfunctions. Math. Res. Lett. 9, 289–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hassell A., Tao T., Wunsch J.: A Strichartz inequality for the Schrödinger equation on non-trapping asymptotically conic manifolds. Commun. Partial Differ. Equ. 30(1–3), 157–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hassell A., Tao T., Wunsch J.: Sharp Strichartz estimates on nontrapping asymptotically conic manifolds. Am. J. Math. 128(4), 963–1024 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hassell A., Vasy A.: The resolvent for Laplace-type operators on asymptotically conic spaces. Ann. l’Inst. Fourier 51, 1299–1346 (2001)

    Article  MathSciNet  Google Scholar 

  46. Hassell A., Vasy A.: The spectral projections and resolvent for scattering metrics. J. d’Anal. Math. 79, 241–298 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ikawa M.: Decay of solutions of the wave equation in the exterior of two convex obstacles. Osaka J. Math. 19, 459–509 (1982)

    MathSciNet  MATH  Google Scholar 

  48. Ikawa M.: Decay of solutions of the wave equation in the exterior of several convex bodies. Ann. Inst. Fourier (Grenoble) 38, 113–146 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ikebe T., Uchiyama J.: On the asymptotic behavior of eigenfunctions of second order elliptic operators. J. Math. Kyoto Univ. 11, 425–448 (1971)

    MathSciNet  MATH  Google Scholar 

  50. Ionescu A., Schlag W.: Agmon–Kato–Kuroda theorems for a large class of perturbations. Duke Math. J. 131(3), 397–440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jensen A.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in \({L^2(\mathbf{R}^m), m \ge 5}\). Duke Math. J. 47, 57–80 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jensen A., Kato T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  53. Journé J.L., Soffer A., Sogge C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44, 573–604 (1991)

    Article  MATH  Google Scholar 

  54. Kato T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  55. Klainerman S.: Uniform decay estimates and the Lorentz invariance of the classical wave equations. Commun. Pure Appl. Math. 38, 321–332 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Lax P., Morawetz C., Phillips R.: Exponential decay of solutions of the wave equation in exterior of a star-shaped obstacle. Commun. Pure Appl. Math. 16, 477–486 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lax P.D., Phillips R.S.: Scattering Theory. 2nd edn. Academic Press, New York (1989)

    MATH  Google Scholar 

  58. Levin D., Solomyak M.: The Rozenblum–Lieb–Cwikel inequality for Markov generators. J. Anal. Math. 71, 173–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Li P., Yau S.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309–318 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Marzuola J., Metcalfe J., Tataru D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. Commun. Math. Phys. 293, 37–83 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Melrose R.: Singularities and energy decay in acoustical scattering. Duke Math. J. 46(1), 43–59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  62. Melrose R.: Spectral and Scattering Theory (Sanda 1992), pp. 85–130. Dekker, New York (1994)

    Google Scholar 

  63. Morawetz C.: The limiting amplitude principle. Commun. Pure Appl. Math. 15, 349–361 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  64. Morawetz C., Ralston J., Strauss W.: Decay of solutions of the wave equation outside nontrapping obstacles. Commun. Pure Appl. Math. 30, 447–508 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203, 149–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Nonnenmacher, S., Zworski, M.: Semiclassical resolvent estimates in chaotic scattering. Appl. Math. Res. Express AMRX 2009(1), 74–86 (2009)

  67. Nonnenmacher, S., Zworski, M.: Decay of correlations for normally hyperbolic trapping (2013, preprint)

  68. Pohozaev S.I.: Eigenfunction of the equation \({\Delta u + \lambda f(u) = 0}\). Sov. Math. Dokl. 6, 1408–1411 (1965)

    Google Scholar 

  69. Rauch J.: Local decay of scattering solutions to Schrödinger’s equation. Commun. Math. Phys. 61, 149–168 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Reed M., Simon B.: Methods of Modern Mathematical Physics, IV. Academic Press, New York (1978)

    MATH  Google Scholar 

  71. Rodnianski, I., Schlag, W.: Dispersive estimates for Schrödinger equations in dimensions one and three. IMRN 5, 243–300 (2003)

  72. Rodnianski, I., Tao, T.: Long-time decay estimates for the Schrödinger equation on manifolds. In: Mathematical Aspects of Nonlinear Dispersive Equations. Annals of Mathematics Studies, vol. 163, pp. 223–253. Princeton University Press, Princeton (2007)

  73. Ruelle D.: A remark on bounded states in potential scattering theory. Nuovo Cimento 61A, 655–662 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  74. Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Mathematical Aspects of Nonlinear Dispersive Equations. Annals of Mathematics Studies, vol. 163, pp. 255–285, Princeton University Press, Princeton (2007)

  75. Shubin M.A.: Spectral theory of elliptic operators on non-compact manifolds. Astérisque 207, 35–108 (1992)

    MathSciNet  Google Scholar 

  76. Simon B.: Best constants in some operator smoothness estimates. J. Funct. Anal. 107, 66–71 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sjölin P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  78. Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7–8), 1337–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  79. Tataru, D.: Unique continuation for partial differential equations. In: Geometric Methods in Inverse Problems and PDE Control, pp. 239–255. The IMA Volumes in Mathematics and its Applications, vol. 137, Springer, New York (2004)

  80. Tataru, D.: Outgoing parametrices and global Strichartz estimates for Schrödinger equations with variable coefficients. In: Phase Space Analysis of Partial Differential Equations, pp. 291–313. Progress in Nonlinear Differential Equations and their Applications, vol. 69, Birkhäuser Boston, Boston (2006)

  81. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times (2009, preprint)

  82. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2011(2), 248–292 (2011)

  83. T’Joen L.: Effets régularisants et existence locale pour l’équation de Schrödinger non-linéaire à à coefficients variables. Commun. Partial Differ. Equ. 27(3–4), 527–564 (2002)

    MathSciNet  MATH  Google Scholar 

  84. Vainberg B.: Behavior of the solution of the Cauchy problem for a hyperbolic equation as \({t \to \infty}\). (Russian) Mat. Sb. (N.S.) 78, 542–578 (1969)

    MathSciNet  Google Scholar 

  85. Vainberg B.: On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as \({t \to \infty}\) solutions of nonstationary problémes. Russ. Math. Surv. 30, 1–53 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  86. Vega L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MathSciNet  MATH  Google Scholar 

  87. Vodev, G.: Local energy decay of solutions to the wave equation for nontrapping metrics. Ark. Mat. 42(2), 379–397 (2004)

  88. Wunsch, J.: Resolvent estimates with mild trapping (2012, preprint)

  89. Wunsch J., Zworski M.: Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré 12, 1349–1385 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Yang S.: Global solutions of nonlinear wave equations in time dependent inhomogeneous media. Commun. Pure Appl. Math. 45(9), 1063–1096 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Tao.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodnianski, I., Tao, T. Effective Limiting Absorption Principles, and Applications. Commun. Math. Phys. 333, 1–95 (2015). https://doi.org/10.1007/s00220-014-2177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2177-8

Keywords

Navigation