Skip to main content
Log in

Small-Particle Limits in a Regularized Laplacian Random Growth Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a regularized version of Hastings–Levitov planar random growth that models clusters formed by the aggregation of diffusing particles. In this model, the growing clusters are defined in terms of iterated slit maps whose capacities are given by

$$c_n = \mathbf{c}| \Phi_{n-1}'({\rm e}^{\sigma + i \theta_n})|^{-\alpha}, \quad \alpha \geq 0,$$

where c > 0 is the capacity of the first particle, {Φ n } n are the composed conformal maps defining the clusters of the evolution, {θ n } n are independent uniform angles determining the positions at which particles are attached, and σ > 0 is a regularization parameter which we take to depend on c. We prove that under an appropriate rescaling of time, in the limit as c → 0, the clusters converge to growing disks with deterministic capacities, provided that σ does not converge to 0 too fast. We then establish scaling limits for the harmonic measure flow over longer time periods showing that, by letting α → 0 at different rates, this flow converges to either the Brownian web on the circle, a stopped version of the Brownian web on the circle, or the identity map. As the harmonic measure flow is closely related to the internal branching structure within the cluster, the above three cases intuitively correspond to the number of infinite branches in the model being either 1, a random number whose distribution we obtain, or unbounded, in the limit as c → 0.

We also present several findings based on simulations of the model with parameter choices not covered by our rigorous analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berestycki, N.: Recent progress in coalescent theory, Ensaios Matematicos 16. Sociedade Brasileira de Matemática, Rio de Janeiro (2009)

  2. Bertoin, J., Le Gall J.-F.: Stochastic flows associated to coalescent processes II: stochastic differential equations. Ann. Inst. Henri Poincaré Prob. Stat. 41, 307–333 (2005)

  3. Carleson L., Makarov N.: Aggregation in the plane and Loewner’s equation, Commun. Math. Phys. 216, 583–607 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Carleson L., Makarov N.: Laplacian path models. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87, 103–150 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davidovitch B., Hentschel H.G.E., Olami Z., Procaccia I., Sander L.M., Somfai E.: Diffusion limited aggregation and iterated conformal maps. Phys. Rev. E 87, 1366–1378 (1999)

    MathSciNet  Google Scholar 

  6. Eden, M.: A two-dimensional growth process. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. IV, pp. 223–239 (1961)

  7. Freedman D.A.: On tail probabilities for martingales. Ann. Prob. 3, 100–118 (1975)

    Article  MATH  Google Scholar 

  8. Hastings M., Levitov L.: Laplacian growth as one-dimensional turbulence. Phys. D 116, 244–252 (1998)

    Article  MATH  Google Scholar 

  9. Johansson Viklund, F.: Convergence rates for loop-erased random walk and other Loewner curves. Ann. Prob. Preprint available at arXiv:1205.5734 (to appear)

  10. Johansson Viklund F., Lawler G.F.: Optimal Hölder exponent for the SLE path. Duke Math. J. 159, 351–383 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Johansson Viklund F., Sola A., Turner A.: Scaling limits of anisotropic Hastings-Levitov clusters. Ann. Inst. Henri Poincaré Prob. Stat. 48, 235–257 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Johansson Viklund, F., Sola, A., Turner, A.: Simulations repository. Available at http://www.maths.lancs.ac.uk/~turnera/simulations.html

  13. Kallenberg O.: Foundations of modern probability. Springer, New York (2002)

    Book  MATH  Google Scholar 

  14. Lawler, G.F.: Conformally invariant processes in the plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence RI (2005)

  15. McMullen C.T.: Program for simulating diffusion limited aggregation. Available at http://www.math.harvard.edu/~ctm/programs/index.html

  16. Niemeyer L., Pietronero L., Wiesmann H.J.: Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52, 1033–1036 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  17. Norris J., Turner A.: Hastings–Levitov aggregation in the small-particle limit. Commun. Math. Phys. 316, 809–841 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Norris, J., Turner, A.: Weak convergence of the localized disturbance flow to the coalescing Brownian flow. Ann. Prob. (2014) (to appear)

  19. Pommerenke Ch.: Boundary behaviour of conformal maps. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  20. Rohde S., Zinsmeister M.: Some remarks on Laplacian growth. Topol. Appl. 152, 26–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Witten T.A. Jr, Sander L.M.: Diffusion-limited aggregation: a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Turner.

Additional information

Communicated by L. Erdös

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson Viklund, F., Sola, A. & Turner, A. Small-Particle Limits in a Regularized Laplacian Random Growth Model. Commun. Math. Phys. 334, 331–366 (2015). https://doi.org/10.1007/s00220-014-2158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2158-y

Keywords

Navigation