Skip to main content
Log in

Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law

Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem:

$$v \cdot \nabla _{x}F =\frac{1}{{\rm K}_{\rm n}}Q(F,F),\qquad (x,v)\in \Omega \times \mathbf{R}^{3}, \quad \quad (0.1) $$
$$F(x,v)|_{n(x)\cdot v<0} = \mu _{\theta}\int_{n(x) \cdot v^{\prime}>0}F(x,v^{\prime})(n(x)\cdot v^{\prime})dv^{\prime},\quad x \in\partial \Omega,\quad \quad (0.2) $$

where Ω is a bounded domain in \({\mathbf{R}^{d}, 1 \leq d \leq 3}\), Kn is the Knudsen number and \({\mu _{\theta}=\frac{1}{2\pi \theta ^{2}(x)} {\rm exp} [-\frac{|v|^{2}}{2\theta (x)}]}\) is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for \({|\theta -\theta_{0}|\leq \delta \ll 1}\) and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion \({F_s=\mu_{\theta_0}+\delta F_{1}+O(\delta ^{2})}\) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aoki K., Lukkarinen J., Spohn H.: Energy Transport in Weakly Anharmonic Chains. J. Stat. Phys. 124, 1105–1129 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Arkeryd L., Esposito R., Marra R., Nouri A.: Stability for Rayleigh-Benard convective solutions of the Boltzmann equation. Arch. Rat. Mech. Anal. 198(1), 125–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkeryd L., Esposito R., Marra R., Nouri A.: Ghost effect by curvature in planar Couette flow. Kinet. Relat. Models. 4(1), 109–138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arkeryd L., Nouri A.: L 1 solutions to the stationary Boltzmann equation in a slab. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 375–413 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arkeryd L., Nouri A.: The stationary Boltzmann equation in R n with given indata. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1, 359–385 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Arkeryd L., Nouri A.: Asymptotic techniques for kinetic problems of Boltzmann type. In: Proceedings of the 3rd edition of the summer school in “Methods and Models of kinetic theory”. Riv. Mat. Univ. Parma. 7, 1–74 (2007)

    MathSciNet  Google Scholar 

  7. Basile G., Olla S., Spohn H.: Wigner functions and stochastically perturbed lattice dynamics. Arch. Rat. Mech. Anal. 195, 171–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boltzmann, L.: Further studies on the thermal equilibrium of gas molecules, 88–174 in Kinetic Theory 2, ed. S.G. Brush, Pergamon, Oxford: Oxford Univ Press, 1966, pp. 88–174

  9. Bonetto, F., Lebowitz, J.L., Ray-Bellet, L.: Fourier’s law: A challenge to theorists. Mathematical physics 2000, London: Imp. Coll. Press, 2000, pp. 128–150

  10. Cercignani, C.: The Boltzmann Equation and its Applications. New York: Springer-Verlag, 1987

  11. Cercignani,C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Berlin-Heidelberg-New York: Springer-Verlag, 1994

  12. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press, 1991

  13. Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Di Perna R.J., Lions P.L.: On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  Google Scholar 

  15. Di Perna R.J., Lions P.L.: Ordinary differential equations, transport theory and Sobolve spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  16. Esposito R., Guo Y., Marra R.: Phase transition in a Vlasov-Boltzmann binary mixture. Commun. Math. Phys. 296(1), 1–33 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Esposito R., Lebowitz J.L., Marra R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160, 49–80 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Esposito R., Lebowitz J.L., Marra R.: The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 78, 389–412 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Guiraud J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann linéaire. J. de Méc. 9(3), 183–231 (1970)

    MathSciNet  Google Scholar 

  20. Guiraud J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. de Méc. 11(2), 443–490 (1972)

    MathSciNet  Google Scholar 

  21. Guiraud, J.P.: An H-theorem for a gas of rigid spheres in a bounded domain. In: Pichon, G. (ed.) Theories cinetique classique et relativistes, Paris: CNRS, 1975, pp. 29–58

  22. Guo Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Guo Y.: The Vlasov-Landau-Poisson system in a periodic box. J. Amer. Math. Soc. 25, 759–812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo Y.: Bounded solutions for the Boltzmann equation. Quart. Appl. Math. 68(1), 143–148 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Guo Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Rat. Mech. Anal. 197(3), 713–809 (2010)

    Article  MATH  Google Scholar 

  26. Guo Y., Jang J.: Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 299(2), 469–501 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Guo Y., Jang J., Jiang N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63(3), 337–361 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Gressman P., Strain R.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Amer. Math. Soc. 24(3), 771–847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim C.: Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains. Commun. Math. Phys. 308(3), 641–701 (2011)

    Article  ADS  MATH  Google Scholar 

  30. Kim, C.: Boltzmann equation with a large external field. Comm. PDE (2011) to appear

  31. Maxwell J.C.: On the Dynamical Theory of gases. Phil. Trans. Roy. Soc. London 157, 49–88 (1866)

    Google Scholar 

  32. Ohwada, T., Aoki, K., Sone, Y.: Heat transfer and temperature distribution in a rarefied gas between two parallel plates with different temperatures: Numerical analysis of the Boltzmann equation for a hard sphere molecule. In: Rarefied Gas Dynamics: Theoretical and Computational Techniques, edited by E. P. Muntz, D. P. Weaver, D. H. Campbell, Washington, DC: AIAA, 1989

  33. Olla, S.: Energy diffusion and superdiffusion in oscillators lattice neworks. New trends in Math. Phys., 539–547 (2009)

  34. Sone, Y.: Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhäuser Boston, Inc., 2007

  35. Sone, Y.: Kinetic theory and fluid dynamics. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhäuser Boston, Inc., 2002

  36. Speck J., Strain R.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304(1), 229–280 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Strain R.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300(2), 529–597 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Ukai, S.: Solutions to the Boltzmann Equations. In: Pattern and Waves - Qualitative Analysis of Nonlinear Differential Equations, Amsterdam: North Holland, 1986, pp. 37–96

  39. Ukai S.: On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation. Proc. Japan Acad. A 53, 179–184 (1974)

    MathSciNet  Google Scholar 

  40. Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  41. Villani, C.: A Review of Mathematical Problems in Collisional Kinetic Theory. In: Handbook of Fluid Mechanics, D. Serre, S. Friedlander ed., Vol. 1, London: Elsevier, 2003

  42. Villani, C. : Hypocoercivity. Mem. Amer. Math. Soc. 202, no. 950 (2009)

  43. Yu S.-H.: Stochastic Formulation for the Initial-Boundary Value Problems of the Boltzmann Equation. Arch. Rat. Mech. Anal. 192(2), 217–274 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Guo.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, R., Guo, Y., Kim, C. et al. Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law. Commun. Math. Phys. 323, 177–239 (2013). https://doi.org/10.1007/s00220-013-1766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1766-2

Keywords

Navigation