Skip to main content
Log in

Pluricomplex Geometry and Hyperbolic Monopoles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by strong desire to understand the natural geometry of moduli spaces of hyperbolic monopoles, we introduce and study a new type of geometry: pluricomplex geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseevsky D.V., Marchiafava S.: Quaternionic structures on a manifold and subordinated structures. Ann. Mat. Pura Appl. (4) 171, 205–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M. F.: ‘Magnetic monopoles in hyperbolic spaces’. In: Vector bundles on algebraic varieties (Bombay, 1984), Bombay: Tata Inst. Fund. Res., 1987, pp. 1–33

  3. Atiyah M.F.: Magnetic monopoles and the Yang-Baxter equation. Int. J. Mod. Phys. A 6, 2761–2774 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Atiyah, M.F., Murray, M.K.: ‘Monopoles and Yang-Baxter equations’. In: Further Advances in Twistor Theory. Volume II: Integrable Systems, Conformal Geometry and Gravitation, London: Chapman and Hall/CRC, 1994, pp. 1314

  5. Atiyah M.F., Ward R.S.: Instantons and algebraic geometry. Commun. Math. Phys. 55, 117–124 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bailey T.N., Eastwood M.G.: Complex paraconformal manifolds - their differential geometry and twistor theory. Forum Math. 3(1), 61–103 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Baston, R.J., Eastwood, M.G.: The Penrose transform. Its interaction with representation theory. Oxford: Oxford University Press, 1989

  8. Bielawski, R., Schwachhöfer, L.: ‘Sheaves on \({\mathbb{P}^1x\mathbb{P}^1}\), bigraded resolutions, and coadjoint orbits of loop groups’. http://arXiv.org/abs/1106.5049v1 [math.SG], 2011

  9. Bielawski, R., Schwachhöfer L.: ‘Hypercomplex limits of pluricomplex structures and the Euclidean limit of hyperbolic monopoles’. Ann. Glob. Anal. Geom., to appear, doi:10.1007/s10455-013-9364-2

  10. Braam P.J., Austin D.M.: Boundary values of hyperbolic monopoles. Nonlinearity 3(3), 809–823 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Donaldson S.K.: Instantons and geometric invariant theory. Commun. Math. Phys. 93, 453–460 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Eastwood M.G.: The generalized Penrose-Ward transform. Math. Proc. Camb. Phil. Soc. 97, 165–187 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hitchin, N.J.: ‘A new family of Einstein metrics’. In: Manifolds and geometry (Pisa, 1993), Cambridge: Cambridge Univ. Press, 1996, pp. 190–222

  14. Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Braunschweig: Vieweg & Sohn, 1997

  15. Hugget S.A., Merkulov S.A.: Twistor transform of vector bundles. Math. Scand. 85, 219–244 (1999)

    MathSciNet  Google Scholar 

  16. Jarvis S., Norbury P.: Zero and infinite curvature limits of hyperbolic monopoles. Bull. London Math. Soc. 29, 737–744 (1997)

    Article  MathSciNet  Google Scholar 

  17. Jardim M., Verbitsky M.: Moduli spaces of framed instanton bundles on \({\mathbb{C}P^3}\) and twistor sections of moduli spaces of instantons on \({\mathbb{C}^2}\). Adv. Math. 227, 1526–1538 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joyce D.: The hypercomplex quotient and the quaternionic quotient. Math. Ann. 290, 323–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Manin, Yu.I.: Gauge field theory and complex geometry. 2nd edition, Berlin: Springer, 1997

  20. Murray M.K., Norbury P., Singer M.A.: Hyperbolic monopoles and holomorphic spheres. Ann. Global Anal. Geom. 23(2), 101–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Murray M.K., Singer M.A.: Spectral curves of non-integral hyperbolic monopoles. Nonlinearity 9(4), 973–997 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Murray M.K., Singer M.A.: On the complete integrability of the discrete Nahm equations. Commun. Math. Phys. 210(2), 497–519 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Nash O.: A new approach to monopole moduli spaces. Nonlinearity 20(7), 1645–1675 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Palamodov, V.P.: ‘Deformations of complex spaces’. In: Several complex variables. IV. Algebraic aspects of complex analysis, Encyclopaedia of Mathematical Sciences 10, Berlin-New York: Springer-Verlag, 1990, pp. 105–194

  25. Ward R.S.: On self-dual gauge fields. Phys. Lett. A 61, 81–82 (1977)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Bielawski.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielawski, R., Schwachhöfer, L. Pluricomplex Geometry and Hyperbolic Monopoles. Commun. Math. Phys. 323, 1–34 (2013). https://doi.org/10.1007/s00220-013-1761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1761-7

Keywords

Navigation