Skip to main content
Log in

Noncommutative Geometry of the Moyal Plane: Translation Isometries, Connes’ Distance on Coherent States, Pythagoras Equality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the metric aspect of the Moyal plane from Connes’ noncommutative geometry point of view. First, we compute Connes’ spectral distance associated with the natural isometric action of \({\mathbb{R}^2}\) on the algebra of the Moyal plane \({\mathcal{A}}\). We show that the distance between any state of \({\mathcal{A}}\) and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes’ spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) \({\mathcal{A}}\) by \({\mathbb{C}^2}\). We show that on the set of states obtained by translation of an arbitrary state of \({\mathcal{A}}\), this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes’ spectral distance and the DFR quantum length coincide on the set of states of optimal localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amelino-Camelia G., Gubitosi G., Mercati F.: Discretness of area in noncommutative space. Phys. Lett. B 676, 180–83 (2009)

    Google Scholar 

  2. The Atlas Collaboration. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012)

    Google Scholar 

  3. The CMS Collaboration. Observation of a new boson at mass of 125GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012)

  4. Bahns D., Doplicher S., Fredenhagen K., Piacitelli G.: Quantum geometry on quantum spacetime: distance, area and volume operators. Commun. Math. Phys. 308, 567–589 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bellissard, J.V., Marcolli, M., Reihani, K.: Dynamical systems on spectral metric spaces. http://arXiv.org/abs/1008.4617v1 [math.OA], 2010

  6. Bimonte G., Lizzi F., Sparano G.: Distances on a lattice from noncommutative geometry. Phys. Lett. B 341, 139–146 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bondia J.M.G., Varilly J.C.: Algebras of distributions suitable for phase-space quantum mechanics I. J. Math. Phys. 29(4), 869–879 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bondia J.M.G., Varilly J.C.: Algebras of distributions suitable for phase-space quantum mechanics. II. J. Math. Phys. 29(4), 880–887 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Cagnache E., d’Andrea F., Martinetti P., Wallet J.-C.: The spectral distance on Moyal plane. J. Geom. Phys. 61, 1881–1897 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Cagnache E., Wallet J.-C.: Spectral distances: Results for Moyal plane and noncommutative torus. SIGMA 6(026), 17 (2010)

    MathSciNet  Google Scholar 

  11. Chamseddine A.H., Connes A., Marcolli M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Christensen E., Ivan C.: Spectral triples for af C*-algebras and metrics on the cantor set. J. Op. Th. 56(1), 17–46 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Christensen, E., Ivan, C., Schrohe, E.: Spectral triples and the geometry of fractals. J. Noncomm. Geom. 6(2), 249–274 (2012)

    Google Scholar 

  14. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mécanique quantique I. Paris: Hermann, 1973

  15. Connes A.: Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergod. Th. & Dynam. Sys. 9, 207–220 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Connes, A.: Noncommutative Geometry. London-New York: Academic Press, 1994

  17. Connes A.: Gravity coupled with matter and the foundations of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Connes A., Dubois-Violette M.: Noncommutative finite-dimensional manifolds I. spherical manifolds and related examples. Commun. Math. Phys. 230, 539–579 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Dai J., Song X.: Pythagoras’ theorem on a 2d-lattice from a “natural” Dirac operator and Connes’ distance formula. J. Phys. A. 34, 5571–5582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. D’Andrea F., Martinetti P.: A view on optimal transport from noncommutative geometry. SIGMA 6(057), 24 (2010)

    MathSciNet  Google Scholar 

  21. D’Andrea, F., Martinetti, P.: On Pythagoras theorem for products of spectral triples. Lett. Math. Phys. 103(5), 469–492 (2013)

    Google Scholar 

  22. Dimakis A., Mueller-Hoissen F.: Connes’ distance function on one dimensional lattices. Int. J. Theor. Phys. 37, 907 (1998)

    Article  MATH  Google Scholar 

  23. Doplicher, S.: Spacetime and fields, a quantum texture. In: Proceedings 37th Karpacz Winter School of Theo. Physics, Moville, NY: Amer. Inst. Phys., 2001, pp. 204–213

  24. Doplicher S.: Quantum field theory on quantum spacetime. J. Phys. Conf. Ser. 53, 793–798 (2006)

    Article  ADS  Google Scholar 

  25. Doplicher S., Fredenhagen K., Robert J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)

    Article  ADS  MATH  Google Scholar 

  26. Figueroa, H., Bondia, J.M.G., Varilly, J.C.: Elements of Noncommutative Geometry. Basel-Boston: Birkhauser, 2001

  27. Gayral V., Bondia J.M.G., Iochum B., Schücker T., Varilly J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569–623 (2004)

    Article  ADS  MATH  Google Scholar 

  28. Gadella M., Gracia-Bondia J.M., Nieto L.M., Varilly J.C.: Quadratic Hamiltonians in phase-space quantum mechanics. J. Phys. A 22, 2709–2738 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Groenewold H.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Basel-Boston: Birkhäuser, 1999

  31. Iochum B., Krajewski T., Martinetti P.: Distances in finite spaces from noncommutative geometry. J. Geom. Phy. 31, 100–125 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  32. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Volume I, Advanced theory. London-New York: Academic Press, 1986

  33. Kadison R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Volume II, Advanced theory. London-NewYork: Academic Press, 1986

  34. Lizzi, F., Varilly, J., Zamponi, A.: Private communication

  35. Lizzi, F., Szabo, R.J., Zampini, A.: Geometry of the gauge algebra in noncommutative Yang-Mills theory. JHEP 0108(032), (2001)

  36. Madore, J.: An introduction to noncommutative differential geometry and its physical applications. Cambridge: Cambridge University Press, 1995

  37. Martinetti, P.: Distances en géométrie non-commutative. PhD thesis. http://arXiv.org.abs/math-ph/0112038v1, 2001

  38. Martinetti P.: Carnot-Carathéodory metric and gauge fluctuation in noncommutative geometry. Commun. Math. Phys. 265, 585–616 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Martinetti P.: Carnot-Carathéodory metric vs gauge fluctuation in noncommutative geometry. African J. Math. Phys. 3, 157–162 (2006)

    Google Scholar 

  40. Martinetti P.: Spectral distance on the circle. J. Func. Anal. 255, 1575–1612 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Martinetti, P.: Smoother than a circle or how noncommutative geometry provides the torus with an egocentric metric. In: Proceedings of Deva Intl. Conf. on Differential Geometry and Physics (Oct. 2005), Romania: Cluj Univ. Press, 2006

  42. Martinetti, P., Tomassini, L.: Length and distance on a quantum space. In: Proc. of Sciences, 042, 2011, available at http://www.pos.sissa.it/archieve/conferences/155/042/CORFU2011-042.pdf

  43. Martinetti P., Mercati F., Tomassini L.: Minimal length in quantum space and integrations of the line element in noncommutative geometry. Rev. Math. Phys. 24(5), 36 (2012)

    Article  MathSciNet  Google Scholar 

  44. Martinetti P., Wulkenhaar R.: Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry. J. Math. Phys. 43(1), 182–204 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Moyal J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99–124 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Piacitelli G.: Quantum spacetime: a disambiguation. SIGMA 6(073), 43 (2010)

    MathSciNet  Google Scholar 

  47. Reed, M., Simon, B.: Methods of modern mathematical physics. Vol 2. Fourier analysis, self-adjointness. New York: Academic Press, 1975

  48. Rieffel M.A.: Metric on state spaces. Documenta Math. 4, 559–600 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Sakai, S.: C*-algebras and W*-algebras. Berlin: Springer-Verlag, 1971

  50. Sitarz A.: Rieffel deformation quantization and isospectral deformation. Int. J. Theor. Phys. 40, 1693–1696 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rudin, W.: Real and complex analysis. New York: McGraw-Hill, 1970

  52. Villani, C.: Topics in Optimal Transportation. Graduate studies in math., Volume~58, Providence, RI: Amer. Math. Soc., 2003

  53. Wallet J.-C.: Connes distance by examples: Homothetic spectral metric spaces. Rev. Math. Phys. 24(9), 1250027 (2012)

    Article  MathSciNet  Google Scholar 

  54. Woronowicz S.L.: Unbounded elements affiliated with C-algebras and non-compact quantum groups. Commun. Math. Phys. 136, 399–432 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Martinetti.

Additional information

Communicated by A. Connes

Work supported by the ERC Advanced Grant 227458 OACFT Operator Algebras & Conformal Field Theory and the ERG-Marie Curie fellowship 237927 Noncommutative geometry & quantum gravity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinetti, P., Tomassini, L. Noncommutative Geometry of the Moyal Plane: Translation Isometries, Connes’ Distance on Coherent States, Pythagoras Equality. Commun. Math. Phys. 323, 107–141 (2013). https://doi.org/10.1007/s00220-013-1760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1760-8

Keywords

Navigation