Skip to main content
Log in

A Phase Transition for Circle Maps and Cherry Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study C 2 weakly order preserving circle maps with a flat interval. The main result of the paper is about a sharp transition from degenerate geometry to bounded geometry depending on the degree of the singularities at the boundary of the flat interval. We prove that the non-wandering set has zero Hausdorff dimension in the case of degenerate geometry and it has Hausdorff dimension strictly greater than zero in the case of bounded geometry. Our results about circle maps allow to establish a sharp phase transition in the dynamics of Cherry flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aranson, S.Kh., Belitskii, G.R., Zhuzhoma, E.V.: Introduction to the Qualitative Theory of Dynamical Systems on Surfaces. Providence, RI: Amer. Math. Soc., 1996

  2. Cherry T.: Analytic quasi-periodic discontinuous type on a torus. Proc. Lond. Math. Soc. 44, 175–215 (1938)

    Article  MathSciNet  Google Scholar 

  3. Denjoy A.: Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 9e série 11, 333–376 (1932)

    MATH  Google Scholar 

  4. Graczyk J.: Dynamics of circle maps with flat spots. Fund. Math. 209, 267–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graczyk J., Jonker L.B., Świa̧tek G., Tangerman F.M., Veerman J.J.P.: Differentiable circle maps with a flat interval. Commun. Math. Phys. 173, 599–622 (1995)

    Article  ADS  MATH  Google Scholar 

  6. Graczyk J., Sands D., Świa̧tek G.: Metric attractors for smooth unimodal maps. Ann. Math. 159, 725–740 (2004)

    Article  MATH  Google Scholar 

  7. Graczyk, J., Świa̧tek, G.: Critical circle maps near bifurcation. Commun. Math. Phys. 176, 227–26 (1996)

    Google Scholar 

  8. Martens M., Van Strien S., De Melo W., Mendes P.: On Cherry flows. Erg. Th. Dyn. Sys. 10, 531–554 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mattila P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  10. Mendes P.: A metric property of Cherry vector fields on the torus. J. Diff. Eqs. 89, 305–316 (1990)

    Article  MathSciNet  Google Scholar 

  11. Moreira P.C., Gaspar A.A.: Metric properties of cherry flows. J. Diff. Eqs. 97, 16–26 (1992)

    Article  MATH  Google Scholar 

  12. Nikolaev I., Zhuzhoma E.: Flows on 2-dimensional Manifolds. Berlin Heidelberg: Springer- Verlag, 1999

  13. Poincaré H.: Sur les courbes définies par les équations différentielles (III). J. Math. Pures Appl. 4e série 1, 167–244 (1885)

    Google Scholar 

  14. Vermann J.J.P.: Irrational rotation number. Nonlinearity 2, 419–428 (1989)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviana Palmisano.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmisano, L. A Phase Transition for Circle Maps and Cherry Flows. Commun. Math. Phys. 321, 135–155 (2013). https://doi.org/10.1007/s00220-013-1685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1685-2

Keywords

Navigation