Skip to main content
Log in

Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a unique continuation principle or uncertainty relation valid for Schrödinger operator eigenfunctions, or more generally solutions of a Schrödinger inequality, on cubes of side \({L \in 2\mathbb{N} + 1}\) . It establishes an equi-distribution property of the eigenfunction over the box: the total L 2-mass in the box of side L is estimated from above by a constant times the sum of the L 2-masses on small balls of a fixed radius δ > 0 evenly distributed throughout the box. The dependence of the constant on the various parameters entering the problem is given explicitly. Most importantly, there is no L-dependence.

This result has important consequences for the perturbation theory of eigenvalues of Schrödinger operators, in particular random ones. For so called Delone-Anderson models we deduce Wegner estimates, a lower bound for the shift of the spectral minimum, and an uncertainty relation for spectral projectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on elliptic boundary value problems. Providence, RI: AMS/Chelsea Publishing, 2010

  2. Bourgain J., Kenig C.E.: On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math. 161(2), 389–426 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bourgain, J., Klein, A.: Bounds on the density of states for Schrödinger operators. http://arxiv.org/1112.1716, to appear Invent. Math. doi:10.1007/s00222-012-0440-1, 2012

  4. Boutet de Monvel A., Lenz D., Stollmann P.: An uncertainty principle, Wegner estimates and localization near fluctuation boundaries. Math. Zeit. 269, 663–670 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boutet de Monvel A., Naboko S., Stollmann P., Stolz G.: Localization near fluctuation boundaries via fractional moments and applications. J. Anal. Math. 100, 83–116 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Combes, J.-M., Hislop, P.D., Klopp, F.: Hölder continuity of the integrated density of states for some random operators at all energies. Int. Math. Res. Not. (4), 179–209 (2003)

  7. Combes J.-M., Hislop P.D., Klopp F.: An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators. Duke Math. J. 140(3), 469–498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Combes J.-M., Hislop P.D., Klopp F., Raikov G.: Global continuity of the integrated density of states for random Landau Hamiltonians. Commun. Part. Diff Eqns. 29, 1187–1214 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combes J.-M., Hislop P.D., Mourre E.: Spectral averaging, perturbation of singular spectra, and localization. Trans. Amer. Math. Soc. 348(12), 4883–4894 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Combes J.-M., Hislop P.D., Nakamura S.: The L p-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random Schrödinger operators. Commun. Math. Phys. 70(218), 113–130 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  11. Escauriaza, L., Vessella, S.: Optimal three cylinder inequalities for solutions to parabolic equations with Lipschitz leading coefficients. In: Inverse problems: theory and applications (Cortona/Pisa, 2002), Volume 333 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2003, pp. 79–87

  12. Germinet, F.: Recent advances about localization in continuum random Schrödinger operators with an extension to underlying Delone sets. In: Mathematical results in quantum mechanics, Hackensack, NJ: World Sci. Publ., 2008, pp. 79–96

  13. Germinet F., Hislop P., Klein A.: Localization for Schrödinger operators with Poisson random potential. J. Europ. Math. Soc. 9(3), 577–607 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Germinet, F., Klein, A.: A comprehensive proof of localization for continuous Anderson models with singular random potentials. http://arxiv.org/abs/1105.0213, to appear in J. Europ. Math. Soc.

  15. Germinet, F., Müller, P., Rojas-Molina, C.: Dynamical Localization for Delone-Anderson operators. In preparation

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin: Springer, 1983

  17. Helm M., Veselić I.: Linear Wegner estimate for alloy-type Schrödinger operators on metric graphs. J. Math. Phys. 48(9), 092107, 7 (2007)

    Article  Google Scholar 

  18. Hörmander L.: Uniqueness theorems for second order elliptic differential equations. Comm. Part. Diff. Eq. 8(1), 21–64 (1983)

    Article  MATH  Google Scholar 

  19. Hundertmark D., Killip R., Nakamura S., Stołlmann P., Veselić I.: Bounds on the spectral shift function and the density of states. Commun. Math. Phys. 262(2), 489–503 (2006)

    Article  ADS  MATH  Google Scholar 

  20. Kirsch W.: Wegner estimates and Anderson localization for alloy-type potentials. Math. Z. 221, 507–512 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Kirsch, W., Metzger, B.: The integrated density of states for random Schrödinger operators. In: Spectral Theory and Mathematical Physics, Volume 76 of Proceedings of Symposia in Pure Mathematics,. Providence, RI: Amer. Math. Soc., 2007, pp. 649–698

  22. Kirsch W., Stollmann P., Stolz G.: Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations 6(3), 241–268 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirsch, W., Veselić, I.: Existence of the density of states for one-dimensional alloy-type potentials with small support. In: Mathematical Results in Quantum Mechanics (Taxco, Mexico, 2001), Volume 307 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2002, pp. 171–176

  24. Kirsch W., Veselić I.: Lifschitz tails for a class of Schrödinger operators with random breather-type potential. Lett. Math. Phys. 94(1), 27–39 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Rojas-Molina C.: Characterization of the Anderson metal-insulator transition for non-ergodic operators and application. Ann. H. Poincaré 13, 1575–1611 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rojas-Molina, C.: Etude mathématique des propriétés de transport des opérateurs de Schrödinger aléatoires avec structure quasi-cristalline. Ph.D. Thesis Université de Cergy-Pontoise, 2012. Available at http://www.theses.fr/2012CERG0565

  27. Schumacher, Ch., Veselić, I.: Low energy properties of random breather models. In preparation

  28. Veselić, I.: Unique continuation principle and Wegner estimates. Extended Abstract on joint work with C. Rojas-Molina, Oberwolfach Rep., 50/2011

  29. Veselić, I.: Lokalisierung bei zufällig gestörten periodischen Schrödingeroperatoren in Dimension Eins. Diplomarbeit, Ruhr-Universität Bochum, 1996, available at http://www.ruhr-uni-bochum.de/mathphys/ivan/diplomski-www-abstract.htm

  30. Veselić, I.: Lifshitz asymptotics for Hamiltonians monotone in the randomness. Oberwolfach Rep. 4(1), 380–382 (2007), available at http://www.arxiv.org/abs/0708.0487v1 [math.sp], 2007

  31. Veselić, I.: Existence and regularity properties of the integrated density of states of random Schrödinger Operators, Vol. 1917 of Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer-Verlag, 2008

  32. Ziemer, W.P.: Weakly differentiable functions. New York: Springer, 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Veselić.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas-Molina, C., Veselić, I. Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators. Commun. Math. Phys. 320, 245–274 (2013). https://doi.org/10.1007/s00220-013-1683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1683-4

Keywords

Navigation