Skip to main content
Log in

The Universal Phase Space of AdS3 Gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe what can be called the “universal” phase space of AdS3 gravity, in which the moduli spaces of globally hyperbolic AdS spacetimes with compact spatial sections, as well as the moduli spaces of multi-black-hole spacetimes are realized as submanifolds. The universal phase space is parametrized by two copies of the universal Teichmüller space \({\mathcal{T}(1)}\) and is obtained from the correspondence between maximal surfaces in AdS3 and quasisymmetric homeomorphisms of the unit circle. We also relate our parametrization to the Chern-Simons formulation of 2+1 gravity and, infinitesimally, to the holographic (Fefferman-Graham) description. In particular, we obtain a relation between the generators of quasiconformal deformations in each \({\mathcal{T}(1)}\) sector and the chiral Brown-Henneaux vector fields. We also relate the charges arising in the holographic description (such as the mass and angular momentum of an AdS3 spacetime) to the periods of the quadratic differentials arising via the Bers embedding of \({\mathcal{T}(1)\times\mathcal{T}(1)}\) . Our construction also yields a symplectic map \({T^ \ast \mathcal{T}(1) \rightarrow \mathcal{T}(1) \times \mathcal{T}(1)}\) generalizing the well-known Mess map in the compact spatial surface setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown J.D., Henneaux M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Banados M., Teitelboim C., Zanelli J.: The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Witten E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  4. Strominger A.: Black hole entropy from near horizon microstates. JHEP 9802, 009 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  5. Witten, E.: Three-Dimensional Gravity Revisited. Available at http://arxiv.org/abs/10706.3359vL [hep.th], 2007

  6. Maloney A., Witten E.: Quantum gravity partition functions in three dimensions. JHEP 1002, 029 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  7. Moncrief V.: Reduction of the Einstein equations in (2+1)-dimensions to a Hamiltonian system over Teichmuller space. J. Math. Phys. 30, 2907–2914 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Krasnov K., Schlenker J.-M.: Minimal surfaces and particles in 3-manifolds. Geom. Dedicata 126, 187–254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Witten E.: (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Mess G.: Lorentz spacetimes of constant curvature. Geom. Dedicata 126, 3–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brill D.R.: Multi-black hole geometries in (2+1)-dimensional gravity. Phys. Rev. D 53, 4133–4176 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  12. Barbot, T.: (2005) Causal properties of AdS-isometry groups. II. BTZ multi black-holes. http://arxiv.org/abs/math/0510065v2 [math.GT], 2006

  13. Bonsante F., Krasnov K., Schlenker J.-M.: Multi black holes and earthquakes on Riemann surfaces with boundaries. Int.Math.Res.Not. 2010, 070 (2010)

    Google Scholar 

  14. Krasnov K.: Analytic continuation for asymptotically AdS 3-D gravity. Class. Quant. Grav. 19, 2399 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Skenderis K., van Rees B.C.: Holography and wormholes in 2+1 dimensions. Commun. Math. Phys. 301, 583 (2011)

    Article  ADS  MATH  Google Scholar 

  16. Banados, M.:Three-dimensional quantum geometry and black holes. In: AIP Phys. Conf. Series 484, College Park, MD: AIP, 1999, pp. 147–169

  17. Skenderis K., Solodukhin S.N.: Quantum effective action from the AdS / CFT correspondence. Phys. Lett. B 472, 316–322 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Henningson M., Skenderis K.: The holographic Weyl anomaly. JHEP 9807, 023 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  19. Balasubramanian V., Kraus P.: A Stress tensor for Anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Bonsante F., Schlenker J.-M.: Maximal surfaces and the universal Teichmüller space. Invent. Math. 182(2), 279–333 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Aiyama R., Akutagawa K., Wan T.Y.H.: Minimal maps between the hyperbolic discs and generalized Gauss maps of maximal surfaces in the anti-de-Sitter 3-space. Tohoku Math. J., II. Ser. 52(3), 415–429 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schlenker, J.-M.: Private communication

  23. Louko, J.: Single exterior black holes. In: Lect. Notes Phys. 541, Berlin-Heidelberg-New York: Springer, 2000, pp. 188–202

  24. Takhtajan, L.A., Teo, L.-P.: Weil-Petersson metric on the universal Teichmüller space. Mem. Amer. Math. Soc. 183 (2006), no. 861, Providence, RI: Amer. Math. Soc., 2006

  25. Seppälä, M., Sorvali, T.: Geometry of Riemann surfaces and Teichmüller spaces. North-Holland mathematics studies. Amsterdam, North-Holland, 1992

  26. Wan T.Y.H.: Constant mean curvature surface, harmonic maps, and universal Teichmüller space. J. Diff. Geom. 35(3), 643–657 (1992)

    MATH  Google Scholar 

  27. Ahlfors L.V.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. (2) 74, 171–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nag S.: On the tangent space to the universal Teichmüller space. Ann. Acad. Sci. Fenn., Ser. A I, Math. 18(2), 377–393 (1993)

    MathSciNet  MATH  Google Scholar 

  29. Ahlfors, L.V.: Lectures on quasiconformal mappings. With additional chapters by C. J. Earle, I. Kra, M. Shishikura, J. H. Hubbard. 2nd enlarged and revised ed., Providence, RI: Amer. Math. Soc., 2006

  30. Gardiner, F., Lakic, N.: Quasiconformal Teichmüller theory. Mathematicsl Surveys and Monographs, Vol. 76, Providence, RI: Amer. Math. Soc., 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Scarinci.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarinci, C., Krasnov, K. The Universal Phase Space of AdS3 Gravity. Commun. Math. Phys. 322, 167–205 (2013). https://doi.org/10.1007/s00220-012-1655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1655-0

Keywords

Navigation