Skip to main content
Log in

A Comparison of Two Topos-Theoretic Approaches to Quantum Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to compare the two topos-theoretic approaches to quantum mechanics that may be found in the literature to date. The first approach, which we will call the contravariant approach, was originally proposed by Isham and Butterfield, and was later extended by Döring and Isham. The second approach, which we will call the covariant approach, was developed by Heunen, Landsman and Spitters.

Motivated by coarse-graining and the Kochen-Specker theorem, the contravariant approach uses the topos of presheaves on a specific context category, defined as the poset of commutative von Neumann subalgebras of some given von Neumann algebra. In particular, the approach uses the spectral presheaf. The intuitionistic logic of this approach is given by the (complete) Heyting algebra of closed open subobjects of the spectral presheaf. We show that this Heyting algebra is, in a natural way, a locale in the ambient topos, and compare this locale with the internal Gelfand spectrum of the covariant approach.

In the covariant approach, a non-commutative C*-algebra (in the topos Set) defines a commutative C*-algebra internal to the topos of covariant functors from the context category to the category of sets. We give an explicit description of the internal Gelfand spectrum of this commutative C*-algebra, from which it follows that the external spectrum is spatial.

Using the daseinisation of self-adjoint operators from the contravariant approach, we give a new definition of the daseinisation arrow in the covariant approach and compare it with the original version. States and state-proposition pairing in both approaches are compared. We also investigate the physical interpretation of the covariant approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Jung, A.: Domain Theory. Handbook of Logic in Computer Science, Volume 3. Oxford: Oxford University Press. 1994, pp. 1–168

  2. Aczel P.: Aspects of general topology in constructive set theory. Ann. Pure Appl. Logic 137, 3–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adelman M., Corbett J.: A Sheaf model for intuitionistic quantum mechanics. Appl. Cat. Struct. 3, 79–104 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banaschewski B., Mulvey C.J.: The spectral theory of commutative C*-algebras: the constructive spectrum. Quaest. Math. 23(4), 425–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banaschewski B., Mulvey C.J.: The spectral theory of commutative C*-algebras: the constructive Gelfand-Mazur theorem. Quaest. Math. 23(4), 465–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banaschewski B., Mulvey C.J.: A Globalisation of the Gelfand duality theorem. Ann. Pure Appl. Logic. 137(1-3), 62–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berberian, S.K.: Baer *-rings. Berlin-Heidelberg-New York: Springer, 1972

  8. Birkhoff G., von Neumann J.: The logic of quantum mechanics. Ann Math. 37, 823–843 (1936)

    Article  Google Scholar 

  9. Bohr, N.: Discussion with Einstein on epistemological problems in Atomic Physics. In: Albert Einstein: Philosopher-Scientist, La Salle: Open Court, 1949, pp. 201–241

  10. Borceux, F.: Handbook of Categorical Algebra 3: Categories of Sheaves. Encyclopedia of Mathematics and its Applications 52. Cambridge: Cambridge University Press, 1994

  11. Bunce L.J., Maitland Wright J.D.: The Mackey-Gleason problem for vector measures on projections in von Neumann algebras. J. London Math. Soc. 2 49(1), 133–149 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Butterfield J., Hamilton J., Isham C.: A Topos Perspective on the Kochen-Specker theorem: III. Von Neumann algebras as the base category. Int. J. Theor. Phys. 39, 1413–1436 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Butterfield J., Isham C.: A Topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations. Int. J. Theor. Phys. 37(11), 2669–2733 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Butterfield J., Isham C.: A Topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues. Int. J. Theor. Phys. 38(3), 827–859 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Butterfield J., Isham C.: A Topos perspective on the Kochen-Specker theorem: IV. Interval valuations. Int. J. Theor. Phys 41, 613–639 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Caspers M., Heunen C., Landsman N.P., Spitters B.: Intuitionistic quantum logic of an n-level system. Found. Phys. 39(7), 731–759 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Coecke B.: Quantum logic in intuitionistic perspective. Studia Logica 70, 411–440 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coquand T.: About Stone’s notion of spectrum. J. Pure Appl. Alg. 197, 141–158 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coquand T., Spitters B.: Constructive Gelfand duality for C*-algebras. Math. Proc. of the Camb. Phil. Soc. 147(2), 323–337 (2009)

    Article  MathSciNet  Google Scholar 

  20. Coquand T., Spitters B.: Integrals and valuations. J. Logic Anal. 1(3), 1–22 (2009)

    MathSciNet  Google Scholar 

  21. van Dalen, D.: Logic and Structure. 4th extended ed. Revised. Berlin: Springer Verlag, 2008

  22. D"oring, A.: Quantum States and Measures on the Spectral Presheaf. Adv. Sci. Lett. on Quantum Gravity, Cosmology and Black Holes, ed. M. Bojowald. available at http://arXiv/org/abs/0809.4847v1 [quant-ph], 2008

  23. D"oring, A.: Topos Quantum Logic and Mixed States. In: Electronic Notes in Theoretical Computer Science (6th Workshop on Quantum Physics and Logic, QPL VI, Oxford, 8.–9. April 2009), eds. B. Coecke, P. Panangaden, P. Selinger. available at http://arXiv/org/abs/1004.3561v1 [quant-ph], 2010

  24. D"oring, A.: The Physical Interpretation of Daseinisation. In: Deep Beauty: Mathematical Innovation and Research for Underlying Intelligibility in the Quantum World, ed. Hans Halvorson. Cambridge: Cambridge University Press, 2011, pp. 207–238

  25. D"oring A., Isham C.: A Topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 49(5), 053515 (2008)

    Article  MathSciNet  Google Scholar 

  26. D"oring A., Isham C.: A Topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49(5), 053516 (2008)

    Article  MathSciNet  Google Scholar 

  27. D"oring A., Isham C.: A Topos foundation for theories of physics: III. Quantum theory and the representation of physical quantities with arrows δ(A). J. Math. Phys. 49(5), 053517 (2008)

    Article  MathSciNet  Google Scholar 

  28. D"oring A., Isham C.: A Topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys. 49(5), 053518 (2008)

    Article  MathSciNet  Google Scholar 

  29. D"oring, A., Isham, C.: What is a Thing? New Structures for Physics, Lecture Notes in Physics. Berlin-Heidelberg-New York: Springer, 2009

  30. Goldblatt, R.: Topoi: the Categorical Analysis of Logic. Amsterdam: North-Holland, 1984

  31. de Groote, H.F.: Observables. http://arxiv.org/abs/math-ph/0507019v1, 2005

  32. de Groote, H.F.: On a Canonical Lattice Structure on the Effect Algebra of a von Neumann Algebra. http://arxiv.org/abs/math-ph/0410.018v2, 2005

  33. de Groote, H.F.: Observables IV: The Presheaf Perspective, http://arxiv.org/abs/0708.0677v1 [math-ph], 2007

  34. Haag, R.: Local Quantum Physics. Texts and Monographs in Physics. Second. Berlin: Springer-Verlag. 1996

  35. Heunen C., Landsman N.P., Spitters B.: A Topos for algebraic quantum theory. Commun. Math. Phys. 291, 63–110 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Heunen C., Landsman N.P., Spitters B.: Bohrification of operator algebras and quantum logic. Synthese 186(2), 719–752 (2012)

    Article  Google Scholar 

  37. Heunen, C., Landsman, N.P., Spitters, B.: Bohrification. In: Deep Beauty: Mathematical Innovation and Research for Underlying Intelligibility in the Quantum World, ed. Hans Halvorson. Cambridge: Cambridge University Press, 2011, pp. 271–313

  38. Heunen C., Landsman N.P., Spitters B., Wolters S.: The Gelfand spectrum of a noncommutative C*-algebra: a topos-theoretic approach. J. Aust. Math. Soc. 90(1), 39–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Isham C.: Topos theory and consistent histories: the internal logic of the set of all consistent sets. Int. J. Theor. Phys. 36, 785814 (1997)

    Article  MathSciNet  Google Scholar 

  40. Isham, C.: Topos Methods in the Foundations of Physics. In: Deep Beauty: Mathematical Innovation and Research for Underlying Intelligibility in the Quantum World, ed. Hans Halvorson. Cambridge: Cambridge University Press, 2011, pp. 187–205

  41. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford: Oxford University Press, 2002

  42. Johnstone P.T.: The Gleason cover of a Topos II. J. Pure and Appl. Alge. 22, 229–247 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Johnstone, P.T.: Open Locales and Exponentiation. Contemp. Math. Vol. 30. Providence, RI: Amer. Math. Soc., 1984

  44. Johnstone, P.T.: Stone Spaces. Cambridge: Cambridge University Press, 1982

  45. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Londen-New York: Academic Press, 1983

  46. Kochen S., Specker E.: The Problem of Hidden Variables in Quantum Mechanics. J. Math. and Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  47. Mac Lane, S., Moerdijk, I.:Sheaves in Geometry and Logic; A First Introduction to Topos Theory. Berlin-Heidelberg-New York: Springer, 1992

  48. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. Vol. I. Amsterdam: North-Holland Publishing Co., 1971

  49. Maeda S.: Probability measures on projections in von Neumann algebras. Rev. Math. Phys. 1(2/3), 235–290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Olson M.P.: The Selfadjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. of the AMS 28, 537–544 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  51. Spitters B.: The space of measurement outcomes as a spectrum for a non-commutative algebras. EPTCS 26, 127–133 (2010)

    Article  Google Scholar 

  52. Takesaki, M.: Theory of Operator Algebra I. Encyclopaedia of Mathematical Sciences. Berlin-Heidelberg-New York: Springer, 1979

  53. Vickers, S.: Locales and Toposes as Spaces. Handbook of Spatial Logics. Berlin-Heidelberg-New York: Springer, 2007, pp. 429–496

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander A. M. Wolters.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolters, S.A.M. A Comparison of Two Topos-Theoretic Approaches to Quantum Theory. Commun. Math. Phys. 317, 3–53 (2013). https://doi.org/10.1007/s00220-012-1652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1652-3

Keywords

Navigation