Skip to main content
Log in

Stability of Black Holes and Black Branes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a new criterion for the dynamical stability of black holes in D ≥ 4 spacetime dimensions in general relativity with respect to axisymmetric perturbations: Dynamical stability is equivalent to the positivity of the canonical energy, \({\mathcal{E}}\), on a subspace, \({\mathcal{T}}\), of linearized solutions that have vanishing linearized ADM mass, momentum, and angular momentum at infinity and satisfy certain gauge conditions at the horizon. This is shown by proving that—apart from pure gauge perturbations and perturbations towards other stationary black holes—\({\mathcal{E}}\) is nondegenerate on \({\mathcal{T}}\) and that, for axisymmetric perturbations, \({\mathcal{E}}\) has positive flux properties at both infinity and the horizon. We further show that \({\mathcal{E}}\) is related to the second order variations of mass, angular momentum, and horizon area by \({\mathcal{E} = \delta^2 M -\sum_A \Omega_A \delta^2 J_A - \frac{\kappa}{8\pi}\delta^2 A}\), thereby establishing a close connection between dynamical stability and thermodynamic stability. Thermodynamic instability of a family of black holes need not imply dynamical instability because the perturbations towards other members of the family will not, in general, have vanishing linearized ADM mass and/or angular momentum. However, we prove that for any black brane corresponding to a thermodynamically unstable black hole, sufficiently long wavelength perturbations can be found with \({\mathcal{E} < 0}\) and vanishing linearized ADM quantities. Thus, all black branes corresponding to thermodynmically unstable black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also prove that positivity of \({\mathcal{E}}\) on \({\mathcal{T}}\) is equivalent to the satisfaction of a “ local Penrose inequality,” thus showing that satisfaction of this local Penrose inequality is necessary and sufficient for dynamical stability. Although we restrict our considerations in this paper to vacuum general relativity, most of the results of this paper are derived using general Lagrangian and Hamiltonian methods and therefore can be straightforwardly generalized to allow for the presence of matter fields and/or to the case of an arbitrary diffeomorphism covariant gravitational action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L., Mars M., Simon W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111–102 (2005)

    Google Scholar 

  2. Burnett G.A., Wald R.M.: A conserved tensor for perturbations of Einstein-Maxwell systems. Proc. R. Soc. Lond. A 430(1878), 57–67 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Chruściel P.T., Wald R.M.: Maximal Hypersurfaces in Stationary, Asymptotically Flat Spacetimes,” Commun. Math. Phys. 163, 561–604 (1994)

    Article  ADS  MATH  Google Scholar 

  4. Corvino J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys. 214, 137–189 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Corvino, J., Schoen, R.M.: On the asymptotics for the vacuum Einstein constraint equations. http://arxiv.org/abs/gr-qc/0301071v1.

  6. Chruściel P.T., Delay E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mem. Soc. Math. France 94, 1 (2003)

    Google Scholar 

  7. Dias O.J.C., Figueras P., Monteiro R., Reall H.S., Santos J.E.: An instability of higher-dimensional rotating black holes. JHEP 1005, 076 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  8. Durkee M., Reall H.S.: Perturbations of higher-dimensional spacetimes. Class. Quant. Grav. 28, 035011 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  9. Durkee M., Reall H.S.: Perturbations of near-horizon geometries and instabilities of Myers-Perry black holes. Phys. Rev. D 83, 104044 (2011)

    Article  ADS  Google Scholar 

  10. Figueras P., Murata K., Reall H.S.: Black hole instabilities and local Penrose inequalities. Class. Quant. Grav. 28, 225030 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  11. Friedman J.L., Schutz B.F.: Gravitational radiation instability in rotating stars. Astrophys. J. 199, L157–L159 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  12. Friedman J.L., Schutz B.F.: Lagrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 221, 937 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  13. Friedman J.L., Schutz B.F.: Secular instability of rotating Newtonian stars. Astrophys. J. 222, 281 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  14. Friedman J.L.: Generic instability of rotating relativistic stars. Commun. Math. Phys. 62, 247–278 (1978)

    Article  ADS  MATH  Google Scholar 

  15. Galloway G.J., Schoen R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gregory R., Laflamme R.: Black strings and p-branes are unstable. Phys. Rev. Lett. 70, 2837 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer Grundlehren der Mathematischen Wissenschaften Vol. 224, Berilin Heidelberg-New York: Springer, 2001

  18. Gubser S.S., Mitra I.: The Evolution of unstable black holes in anti-de Sitter space. JHEP 0108, 018 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. Gubser, S.S., Mitra, I.: Instability of charged black holes in Anti-de Sitter space. http://arxiv.org/abs/help-th/0009126vL, 2000

  20. Habisohn C.X.: Calculation of radiated gravitational energy using the second-order Einstein tensor. J. Math. Phys. 27, 2759 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Hollands S., Ishibashi A., Wald R.M.: A Higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Hollands S., Ishibashi A.: Asymptotic flatness and Bondi energy in higher dimensional gravity. J. Math. Phys. 46, 022503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hollands S., Wald R.M.: Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions. Class. Quant. Grav. 21, 5139 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Iyer V., Wald R.M.: Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  25. Iyer V., Wald R.M.: A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D 52, 4430 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  26. Mars M.: Stability of MOTS in totally geodesic null horizons. Class. Quant. Grav. 29, 145019 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  27. Moncrief V., Isenberg J.: Symmetries of Higher Dimensional Black Holes. Class. Quant. Grav. 25, 195015 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. Morrey, C.B.: Multiple integrals in the calculus of variation. Berlin, Heidelberg, New York: Springer Verlag, 1966

  29. Myers R.C., Perry M.J.: Black Holes in Higher Dimensional Space-Times. Annals Phys. 172, 304 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Racz I.: A Simple proof of the recent generalisations of Hawking’s black hole topology theorem. Class. Quant. Grav. 25, 162001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. Reall H.S.: Classical and thermodynamic stability of black branes. Phys. Rev. D 64, 044005 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  32. Regge T., Teitelboim C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286–318 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Regge T., Wheeler J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Schechter M.: General boundary value problems for elliptic partial differential equations. Commun. Pure and App. Math. XII, 457–486 (1959)

    Article  MathSciNet  Google Scholar 

  35. Seifert M.D., Wald R.M.: A General variational principle for spherically symmetric perturbations in diffeomorphism covariant theories. Phys. Rev. D 75, 084029 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  36. Sorkin R.D., Varadarajan M.: Energy extremality in the presence of a black hole. Class. Quant. Grav. 13, 1949 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Tanabe K., Kinoshita S., Shiromizu T.: Asymptotic flatness at null infinity in arbitrary dimensions. Phys. Rev. D 84, 044055 (2011)

    Article  ADS  Google Scholar 

  38. Teukolsky S.A.: Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations. Phys. Rev. Lett. 29, 1114 (1972)

    Article  ADS  Google Scholar 

  39. Wald R.M., Zoupas A.: A General definition of ‘conserved quantities’ in general relativity and other theories of gravity. Phys. Rev. D 61, 084027 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  40. Zerilli F.J.: Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hollands.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollands, S., Wald, R.M. Stability of Black Holes and Black Branes. Commun. Math. Phys. 321, 629–680 (2013). https://doi.org/10.1007/s00220-012-1638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1638-1

Keywords

Navigation