Skip to main content
Log in

On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice \({h\mathbb{Z}}\) with mesh size h > 0. In the continuum limit when h → 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on \({\mathbb{R}}\) with the fractional Laplacian (−Δ)α as dispersive symbol. In particular, we obtain that fractional powers \({\frac{1}{2} < \alpha < 1}\) arise from long-range lattice interactions when passing to the continuum limit, whereas the NLS with the usual Laplacian −Δ describes the dispersion in the continuum limit for short-range or quick-decaying interactions (e. g., nearest-neighbor interactions).

Our results rigorously justify certain NLS model equations with fractional Laplacians proposed in the physics literature. Moreover, the arguments given in our paper can be also applied to discuss the continuum limit for other lattice systems with long-range interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M., Prinar, B., Trubatch, A.: Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series, No. 302, Cambridge: Cambridge University Press, 2004

  2. Cazenave, T., Haraux, A.: An introduction to semilinear evolution equations. Oxford Lecture Series in Mathematics and its Applications, Volume 13. New York: The Clarendon Press/Oxford University Press, 1998

  3. Dickinson D.: Approximative Riemann-sums for improper integrals. Quart. J. Math. 12(1), 176–183 (1941)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Frank, R.L., Lenzmann, E.: Uniqueness and nondegeneracy of ground states for (−Δ)s Q+QQ α+1 = 0 in \({\mathbb{R}}\). Preprint available at http://arxiv.org/abs/1009.4042v1 [math.AP], 2010

  5. Gaididei Yu., Mingaleev S., Christiansen P., Rasmussen K.: Effect of nonlocal dispersion on self-trapping excitations. Phys. Rev. E 55:5, 6141–6150 (1997)

    Article  Google Scholar 

  6. Gaididei Yu., Mingaleev S., Christiansen P., Rasmussen K.: Effect of nonlocal dispersion on self-interacting excitations. Phys. Lett. A 222, 152–156 (1996)

    Article  ADS  Google Scholar 

  7. Gérard, P.: Private communication

  8. Ladyzhenskaya, O. A.: The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, No. 49. New York: Springer-Verlag, 1985

  9. Laskin N.: Fractional Schrodinger equation. Phys. Revi. E 66, 056108 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  10. Lions, P.-L.: Quelque méthodes de résolution de problèmes aux limites non linéaires. Paris: Dunod/Gauthier Villars, 1969

  11. de la Llave R., Valdinoci E.: Symmetry for a Dirichlet-Neumann problem arising in water waves. Math. Res. Lett. 16(5), 909–918 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Mingaleev S., Christiansen P., Gaididei Y., Johannson M., Rasmussen K.: Models for Energy and Charge Transport and Storage in Biomolecules. J. Biol. Phys. 25, 41–63 (1999)

    Article  Google Scholar 

  13. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Amsterdam: Gordon and Breach Science Publishers, 1993

  14. Sire Y., Valdinoci E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sulem, P. L., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107, 3431–454 (1986)

    Google Scholar 

  16. Tarasov V. E.: Continuous limit of discrete systems with long-range interaction. J. Phys. A. 39, 14895–14910 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Tarasov V.E., Zaslavsky G.M.: Fractional dynamics of systems with long-range interaction. Commun. Nonlin. Sci. Num. Sim. 11, 885–989 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gigliola Staffilani.

Additional information

Communicated by H.-T. Yau

K.K. was partially supported by NSF grants DMS-0703618, DMS-1106770 and OISE-0730136.

E.L. acknowledges support by a Steno fellowship from the Danish Research Council.

G.S. was partially supported by NSF grant DMS-1068815.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkpatrick, K., Lenzmann, E. & Staffilani, G. On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions. Commun. Math. Phys. 317, 563–591 (2013). https://doi.org/10.1007/s00220-012-1621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1621-x

Keywords

Navigation