Skip to main content
Log in

The Faddeev–Mickelsson–Shatashvili Anomaly and Lifting Bundle Gerbes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In gauge theory, the Faddeev–Mickelsson–Shatashvili anomaly arises as a prolongation problem for the action of the gauge group on a bundle of projective Fock spaces. In this paper, we study this anomaly from the point of view of bundle gerbes and give several equivalent descriptions of the obstruction. These include lifting bundle gerbes with non-trivial structure group bundle and bundle gerbes related to the caloron correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, 82. New York–Berlin: Springer–Verlag, 1982

  2. Bouwknegt P., Mathai V., Wu S.: Bundle gerbes and moduli spaces. J. Geom. Phys. 62(1), 1–10 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Carey A., Mickelsson J., Murray M.: Index theory, gerbes, and Hamiltonian quantization. Commun. Math. Phys. 183(3), 707–722 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Carey, A.L., Murray, M.K.: Mathematical remarks on the cohomology of gauge groups and anomalies. In: Confronting the infinite (Adelaide, 1994). River Edge, NJ: World Sci. Publishing, 1995, pp. 136–148

  5. Carey A.L., Murray M.K.: Faddeev’s anomaly and bundle gerbes. Lett. Math. Phys. 37(1), 29–36 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Faddeev, L.D., Shatashvili, S.L.: Algebraic and Hamiltonian methods in the theory of nonabelian anomalies. Teoret. Mat. Fiz. 60(2), 206–217 (1984) [English translation: Theoret. and Math. Phys. 60(2), 770–778 (1984)]

  7. Faddeev L.D.: Operator anomaly for the Gauss law. Phys. Lett. 145B(1,2), 81–84 (1984)

    MathSciNet  ADS  Google Scholar 

  8. Hekmati P.: Integrability Criterion for Abelian Extensions of Lie Groups. Proc. Amer. Math. Soc. 138(3), 4137–4148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hekmati P., Murray M.K., Vozzo R.F.: The general caloron correspondence. J. Geom. Phys. 62(2), 224–241 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Jackiw R., Johnson K.: Anomalies of the axial vector current. Phys. Rev. 182(5), 1459–1469 (1969)

    Article  ADS  Google Scholar 

  11. Mickelsson J.: Chiral anomalies in even and odd dimensions. Commun. Math. Phys. 97(3), 361–370 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Murray M.K.: Bundle gerbes. J. London Math. Soc. (2) 54(2), 403–416 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murray, M.K.: An Introduction to Bundle Gerbes. In: The Many Facets of Geometry, A Tribute to Nigel Hitchin, Edited by Oscar Garcia-Prada, Jean Pierre Bourguignon, and Simon Salamon, Oxford: Oxford University Press, 2010

  14. Murray, M.K.: Generalised bundles and bundle gerbes. In preparation

  15. Murray M.K., Stevenson D.: Bundle gerbes: stable isomorphism and local theory. J. London Math. Soc. (2) 62(3), 925–937 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Segal, G.B.: Faddeev’s anomaly in Gauss’s law. Preprint, 1985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Murray.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hekmati, P., Murray, M.K., Stevenson, D. et al. The Faddeev–Mickelsson–Shatashvili Anomaly and Lifting Bundle Gerbes. Commun. Math. Phys. 319, 379–393 (2013). https://doi.org/10.1007/s00220-012-1608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1608-7

Keywords

Navigation