Skip to main content
Log in

Hastings’s Additivity Counterexample via Dvoretzky’s Theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal of this note is to show that Hastings’s counterexample to the additivity of minimal output von Neumann entropy can be readily deduced from a sharp version of Dvoretzky’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Holevo, A.S.: The additivity problem in quantum information theory. In: “Proceedings of the International Congress of Mathematicians (Madrid, 2006),” Vol. III, Zürich: Eur. Math. Soc., 2006, pp. 999–1018

  3. Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246(3), 453–472 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nature Phys. 5, 255 (2009)

    Article  ADS  Google Scholar 

  5. Dvoretzky, A.: Some Results on Convex Bodies and Banach Spaces. In: “Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960),” Jerusalem: Jerusalem Academic Press, Oxford: Pergamon, 1961, pp. 123–160

  6. Brandao F., Horodecki M.: On Hastings’ counterexamples to the minimum output entropy additivity conjecture. Open Syst. Inf. Dyn. 17, 31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukuda M., King C., Moser D.: Comments on Hastings’ Additivity Counterexamples. Commun. Math. Phys. 296, 111 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1. Commun. Math. Phys. 284, 263–280 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Aubrun G., Szarek S., Werner E.: Non-additivity of Rényi entropy and Dvoretzky’s theorem. J. Math. Phys. 51, 022102 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  10. Milman V.: A new proof of the theorem of A. Dvoretzky on sections of convex bodies. Funct. Anal. Appl. 5, 28–37 (1971) (English translation)

    MathSciNet  Google Scholar 

  11. Figiel T., Lindenstrauss J., Milman V.D.: The dimension of almost spherical sections of convex bodies. Acta Math. 139(1-2), 53–94 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Collins, B., Nechita, I.: Gaussianization and eigenvalue statistics for random quantum channels (III), Ann. Appl. Probab., to appear; http://arxiv.org/abs/0910.1768v2 [quant-ph], 2009

  13. Lévy P.: Problémes concrets d’analyse fonctionnelle. 2nd ed. Gauthier-Villars, Paris (1951)

    MATH  Google Scholar 

  14. Pisier, G.: The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics, 94. Cambridge: Cambridge University Press, 1989

  15. Gordon, Y.: On Milman’s inequality and random subspaces which escape through a mesh in R n. In: “Geometric aspects of functional analysis (1986/87),” Lecture Notes in Math., 1317 Berlin: Springer, 1988, pp. 84–106

  16. Schechtman, G.: A remark concerning the dependence on \({\varepsilon}\) in Dvoretzky’s theorem. In: “Geometric aspects of functional analysis (1987–88),” Lecture Notes in Math., 1376 Berlin: Springer, 1989, pp. 274–277

  17. Marchenko V.A., Pastur L.A.: The distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72, 507–536 (1967)

    MathSciNet  Google Scholar 

  18. Hayden P., Leung D., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95–117 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Haagerup U., Thorbjørnsen S.: Random matrices with complex Gaussian entries. Expos. Math. 21, 293–337 (2003)

    Article  MATH  Google Scholar 

  20. Geman S.: A limit theorem for the norm of random matrices. Ann. Probab. 8, 252–261 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Silverstein J.W.: The smallest eigenvalue of a large-dimensional Wishart matrix. Ann. Probab 13, 1364–1368 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dudley R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jain, N. C., Marcus, M. B.: Continuity of subgaussian processes. In: “Probability on Banach Spaces,” Advances in Probability, Vol. 4, New York: Dekker, 1978, pp. 81–196

  24. Talagrand M.: The generic chaining. Upper and Lower bounds of Stochastic Processes. Springer, Berlin-Heidelberg-New York (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Szarek.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubrun, G., Szarek, S. & Werner, E. Hastings’s Additivity Counterexample via Dvoretzky’s Theorem. Commun. Math. Phys. 305, 85–97 (2011). https://doi.org/10.1007/s00220-010-1172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1172-y

Keywords

Navigation