Skip to main content
Log in

Dirac Operators on Quantum Projective Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a family of self-adjoint operators D N , \({N\in{\mathbb Z}}\) , which have compact resolvent and bounded commutators with the coordinate algebra of the quantum projective space \({{\mathbb C}{\rm P}^{\ell}_q}\) , for any  ≥ 2 and 0 < q < 1. They provide 0+-dimensional equivariant even spectral triples. If is odd and \({N=\frac{1}{2}(\ell+1)}\) , the spectral triple is real with KO-dimension 2 mod 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammann B., Bär C.: The Dirac operator on Nilmanifolds and collapsing circle bundles. Ann. Global Anal. Geom. 16(3), 221–253 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bincer A.M.: Casimir operators for su q (n). J. Phys. A 24(19), L1133–L1138 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Björner A., Brenti F.: Combinatorics of Coxeter Groups. Springer, Berlin-Heidelberg-New York (2005)

    MATH  Google Scholar 

  4. Cahen, M., Franc, A., Gutt, S.: Spectrum of the Dirac operator on complex projective space \({P_{2q-1}(\mathbb{C})}\) . Lett. Math. Phys. 18(2), 165–176 (1989), Erratum in Lett. Math. Phys. 32, 365–368 (1994)

    Google Scholar 

  5. Chakrabarti A.: q-analogs of IU(n) and U(n,1). J. Math. Phys. 32(5), 1227–1234 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chu C.-S., Ho P.-M., Zumino B.: Geometry of the quantum complex projective space CP q (N). Eur. Phys. J. C 72(1), 163–170 (1996)

    MathSciNet  Google Scholar 

  7. Connes A.: Noncommutative Geometry. Academic Press, London-New York (1994)

    MATH  Google Scholar 

  8. Connes A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Dąbrowski, L.: The local index formula for quantum SU(2). In: Traces in Number Theory, Geometry and Quantum Fields, S. Albeverio et al. (eds), Aspects of Mathematics E38, Wiesbaden: Vieweg Verlag, 2008

  10. Dąbrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere. In: Noncommutative Geometry and Quantum Groups, Vol. 61, Warsaw: Banach Center Publ., 2003, pp. 49–58

  11. Dąbrowski L., Sobczyk J.: Left regular representation and contraction of sl q (2) to e q (2). Lett. Math. Phys. 32(3), 249–258 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. D’Andrea F., Dąbrowski L., Landi G.: The isospectral Dirac operator on the 4-dimensional orthogonal quantum sphere. Commun. Math. Phys. 279(1), 77–116 (2008)

    Article  MATH  ADS  Google Scholar 

  13. D’Andrea F., Dąbrowski L., Landi G.: The noncommutative geometry of the quantum projective plane. Rev. Math. Phys. 20(8), 979–1006 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. D’Andrea F., Dąbrowski L., Landi G., Wagner E.: Dirac operators on all Podleś spheres. J. Noncomm. Geom. 1(2), 213–239 (2007)

    Article  MATH  Google Scholar 

  15. D’Andrea, F., Landi, G.: Antiself-dual connections on the quantum projective plane: monopoles. http://arXiv.org/abs/0903.3555/v1[math.QA], 2009

  16. Dolan B.P., Huet I., Murray S., O’Connor D.: A universal Dirac operator and noncommutative spin bundles over fuzzy complex projective spaces. JHEP 03, 029 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Gelfand, I.M.: Collected papers, vol. II, Berlin-Heidelberg-New York: Springer-Verlag, 1988, pp. 653–656, English translation of the paper: Dokl. Akad. Nauk SSSR 71, 825–828 (1950)

  18. Heckenberger I., Kolb S.: The locally finite part of the dual coalgebra of quantized irreducible flag manifolds. Proc. London Math. Soc. 89(2), 457–484 (2005)

    Article  MathSciNet  Google Scholar 

  19. Heckenberger I., Kolb S.: De Rham complex for quantized irreducible flag manifolds. J. Algebra 305(2), 704–741 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Itzykson C., Nauenberg M.: Unitary groups: representations and decompositions. Rev. Mod. Phys. 38(1), 95–120 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Klimyk, A., Schmüdgen, K.: Quantum Groups and their Representations. Berlin-Heidelberg-New York: Springer, 1997

  22. Krähmer U.: Dirac operators on quantum flag manifolds. Lett. Math. Phys. 67(1), 49–59 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Neshveyev, S., Tuset, L.: The Dirac operator on compact quantum groups. http://arxiv.org/abs/math/0703161v2[math.OA], 2007

  24. Reshetikhin, N.Y.: Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links I and II. Preprint LOMI E-4-87 E-17-87, 1987

  25. Serre J.-P.: Complex Semisimple Lie Algebras. Springer, Berlin-Heidelberg-New York (2001)

    MATH  Google Scholar 

  26. Schmüdgen K., Wagner E.: Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere. J. Reine Angew. Math. 574, 219–235 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Seifarth, S., Semmelmann, U.: The Spectrum of the Dirac Operator on the Odd Dimensional Complex Projective Space \({P^2_{m-1}(C)}\) . SFB 288 Preprint 95, 1993

  28. Sitarz, A.: Equivariant spectral triples. In: Noncommutative Geometry and Quantum Groups Vol. 61, Warsaw: Banach Centre Publ., 2003, pp. 231–263

  29. Vaksman L., Soibelman Ya.: The algebra of functions on the quantum group SU(n + 1) and odd-dimensional quantum spheres. Leningrad Math. J. 2, 1023–1042 (1991)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwik Dąbrowski.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Andrea, F., Dąbrowski, L. Dirac Operators on Quantum Projective Spaces. Commun. Math. Phys. 295, 731–790 (2010). https://doi.org/10.1007/s00220-010-0989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-0989-8

Keywords

Navigation