Skip to main content
Log in

AQFT from n-Functorial QFT

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

There are essentially two different approaches to the axiomatization of quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and functorial QFT, going back to Atiyah and Segal. More recently, based on ideas by Baez and Dolan, the latter is being refined to “extended” functorial QFT by Freed, Hopkins, Lurie and others. The first approach uses local nets of operator algebras which assign to each patch an algebra “of observables”, the latter uses n-functors which assign to each patch a “propagator of states”.

In this note we present an observation about how these two axiom systems are naturally related: we demonstrate under mild assumptions that every 2-dimensional extended Minkowskian QFT 2-functor (“parallel surface transport”) naturally yields a local net, whose locality derives from the 2-categorical exchange law, and which is covariant if the 2-functor is equivariant. This is obtained by postcomposing the propagation 2-functor with an operation that mimics the passage from the Schrödinger picture to the Heisenberg picture in quantum mechanics. The argument has a straightforward generalization to general Lorentzian structure, bare lightcone structure and higher dimensions. It does not, however, by itself imply anything about the existence of a vacuum state or about positive energy representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS’04). IEEE Computer Science Press, 2004, pp. 415–425[arXiv:quant-ph/0402130]

  2. Atiyah M.: Topological quantum field theory. Publ. Math. de l’IHÉS 68, 175–186 (1988)

    MATH  MathSciNet  Google Scholar 

  3. Baas, N., Bökstedt, M., Kro, T.: Two-categorical bundles and their classifying spaces. http://arxiv.org/abs/math/0612549v2[math.AT], 2008

  4. Baez, J.: Quantum quandaries: a category-theoretic perspective. In: Structural Foundations of Quantum Gravity, eds. S. French, D. Rickles, J. Saatsi, Oxford: Oxford U. Press, 2006, pp. 240–265

  5. Baez J., Crans A.: Lie 2-algebras. Theor. Appl. of Categories 12, 492–528 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Baez J., Crans A., Schreiber U., Stevenson D.: From loop groups to 2-groups. Homology, Homotopy Appl. 9(2), 101–135 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Baez J., Dolan J.: Higher dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Baez, J., Schreiber, U.: Higher gauge theory. In: Contemporary Mathematics 431, Categories in Algebra, Geometry and Mathematical Physics, Providence, RI: Amer. Math. Soc., 2007, pp. 7–30

  9. Bartels, T.: 2-Bundles. PhD Thesis, UC Riverside, 2006, available at http://math.ver.edu/home/baez/thesis_toby.pdf

  10. Bartlett, B.: Categorical aspects of topological quantum Field theories. M.Sc Thesis, Utrecht University, 2005, http://arxiv.org/abs/math/0512103v1[math.QA], 2005

  11. Bartlett, B.: On unitary 2-representations of finite groups and TQFT. PdD Thesis, University of Sheffield, 2008

  12. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle – A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  13. Buchholz D., Haag R.: The quest for understanding in relativistic quantum physics. J. Math. Phys. 41, 3674–3697 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Cheng E., Gurski N.: Towards an n-category of cobordisms. Theory and Applications of Categories 18(10), 274–302 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Coecke, B.: Kindergarten quantum mechanics. Talk at Quantum Information, Computation and Logic (Perimeter Institute, 2005), available at http://www.quxat.org/quoxic.talks/bobkinder.pdf

  16. Elgueta J.: Representation theory of 2-groups on Kapranov and Voevodsky’s 2-vector spaces. Adv. in Math. 213(1), 53–92 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Evans D.E., Kawahigashi Y.: Quantum symmetries on operator algebras. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  18. Fjelstad J., Fuchs J., Runkel I., Schweigert C.: Uniqueness of open/closed rational CFT with given algebra of open states. Adv. Theor. Math. Phys. 12(6), 1283–1375 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Fjelstad, J., Schreiber, U.: Rational CFT is parallel transport, in preparation [http://www.math.uni-hamburg.de/home/schreiber/cc.pdf], 2008

  20. Fredenhagen K., Rehren K., Seiler E.: Quantum field theory: Where we are. Lecture Notes in Physics 721, 61–87 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Freed D.S.: Higher algebraic structures and quantization. Commun. Math. Phys. 159, 343–398 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Freed, D.S.: Quantum groups from path integrals. Proceedings of Particles and Fields (Banff, 1994), 63Ð107, CRM Ser. Math. Phys., New York: Springer, 1999, available at http://arxiv.org/abs/q-alg/9501025v1, 1995

  23. Freed D.S.: Remarks on Chern-Simons Theory. Bull. Amer. Math. Soc. (NS) 46(2), 221–254 (2009) [arXiv:0808.2507]

    Article  MATH  MathSciNet  Google Scholar 

  24. Ganter N., Kapranov M.: Representation and character theory in 2-categories. Adv. in Math. 213(1), 53–92 (2007)

    Article  Google Scholar 

  25. Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1992)

    MATH  Google Scholar 

  26. Halvorson H., Mueger M.: Algebraic quantum field theory. In: Butterfield, J., Earman, J. (eds) Handbook of the Philosophy of Physics, pp. 731–922. North-Holland, Amsterdam (2007)

    Chapter  Google Scholar 

  27. Lurie, J.: On the classication of topological field theories, [http://www-math.mit.edu/~lurie/papers/cobordism.pdf], 2009

  28. Huang Y.-Z.: Geometric interpretation of vertex operator algebras. Proc. Natl. Acad. Sci. USA 88, 9964–9968 (1991)

    Article  MATH  ADS  Google Scholar 

  29. Kapranov, M., Voevodsky, V.: 2-categories and Zamolodchikov tetrahedra equations. In: Algebraic Groups and Theor Generalization Quantum and Infinite-Dimension Methods, Proc. Symp. Pure Math. 56, Part 2, Providence, RI: Amer. Math. Soc., 1994, pp. 177–259

  30. Kawahigashi, Y.: Classification of operator algebraic conformal field theories in dimensions one and two. In: Proceedings of XIV International Congress on Mathematical Physics at Lisbon (2003) [arXiv:math-ph/0308029]

  31. Kawahigashi, Y.: Conformal Field Theory and Operator Algebras. In: Proceedings of ICMP, Rio de Janeiro (2006), available at http://arxiv.org/abs/0704.0097v1[math-ph], 2007

  32. Kawahigashi, Y., Longo, R.: Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories. 244, Number 1, 63–97 (2004)

  33. Kelly, G.M.: Basic concepts of enriched category theory. Cambridge University Press, Lecture Notes in Mathematics 64, 1982; Republished in: Reprints in Theory and Applications of Categories, No. 10 (2005) pp. 1–136, available at http://www.tac.mta.ca/tac/reprints/articles/10/+10.pdf

  34. Kawahigashi Y., Longo R.: Local conformal nets arising from framed vertex operator algebras. Adv. in Math. 206(2), 729–751 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kong L.: Open-closed field algebras. Commun. Math. Phys. 280, 207–261 (2008)

    Article  MATH  ADS  Google Scholar 

  36. Lauda A.: Frobenius algebras and ambidextrous adjunctions. Theory and Applications of Categories 16(4), 84–122 (2006)

    MATH  MathSciNet  Google Scholar 

  37. Lechner, G.: On the construction of quantum field theories with factorizing S-Matrices. PhD thesis, Göttingen, 2006

  38. Leinster, T.: Basic bicategories. http://arxiv.org/abs/math/9810017v2[math.CT], 1998

  39. Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  40. Longo R., Rehren K.-H.: Local fields in boundary conformal QFT. Rev. Math. Phys. 16, 909 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Müger M.: From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories. J, Pure Appl. Alg. 180, 81–157 (2003)

    Article  MATH  Google Scholar 

  42. Nill F., Szlachány K.: Quantum chains of Hopf algebras with order-disorder fields and quantum double symmetry. Commun. Math. Phys. 187(1), 159–200 (1997)

    Article  MATH  ADS  Google Scholar 

  43. Ocneanu, A.: Quantized group, string algebras and Galois theory for algebras. In: Operator Algebras and Applications, Vol. 2, eds. Evans, D.E., Takesaki, M. Cambridge: Cambridge University Press, 1988, 119

  44. Rehren, K.-H.: weblog comment, [http://golem.ph.utexas.edu/~distler/blog/archives/000987.html#c005396]

  45. Roberts J., Longo R.: A theory of dimension. K-Theory 11(2), 103–159 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Runkel I., Fjelstad J., Fuchs J., Schweigert C.: Topological and conformal field theory as Frobenius algebras. Contemp. Math. 431, 225–248 (2007)

    MathSciNet  Google Scholar 

  47. Sati, H., Schreiber, U., Škoda, Z., Stevenson, D.: Twisted nonabelian differential cohomology. In preparation, [http://www.math.uni-hamburg.de/home/schreiber/nactwist.pdf], 2008

  48. Schreiber, U.: The canonical 2-representation. [http://www.math.uni-hamburg.de/home/schreiber/canrep.pdf], 2008

  49. Schreiber, U., Waldorf, K.: Parallel transport and functors. To appear in Journal of Homotopy and Related Structures available at http://arxiv.org/abs/0705.0452v2[math.D6], 2008

  50. Schreiber, U., Waldorf, K.: Smooth functors vs. differential forms. http://arxiv.org/abs0802.0663v2[math.DG], 2008

  51. Schreiber, U., Waldorf, K.: Connections on non-abelian Gerbes and their Holonomy. http://arxiv.org/abs/0808.1923v1[math.DG], 2008

  52. Schroer B.: Modular Wedge Localization and the d = 1 + 1 Formfactor Program. Annals Phys. 275, 190–223 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Segal, G.: The definition of conformal field theory. In: Topology, geometry and quantum field theory, London Math. Soc. LNS 308, edited by U. Tillmann, Cambridge: Cambridge Univ. Press 2004, pp. 247–343

  54. Shulman M.: Framed bicategories and monoidal fibrations. Theory and Applications of Categories 20(18), 650–738 (2008)

    Google Scholar 

  55. Stolz, S., Teichner, P.: What is an elliptic object? In: Topology, geometry and quantum field theory, London Math. Soc. LNS 308, Cambridge: Cambridge Univ. Press, 2004, pp. 247–343

  56. Street R.: Categorical and combinatorial aspects of descent theory. Applied Categorical Structures 12(5-6), 537–576 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  57. Verity, D.: Cobordisms and weak complicial sets. Talk given at Macquarie Univ., Australian Category Theory Seminar, February 13, 2008

  58. Walker, K.: TQFTs, [http://canyon23.net/math/tc.pdf]

  59. Wockel, C.: A global perspective to gerbes and their gauge stacks. http://arxiv.org/abs/0803.3692v3[math.DG], 2008

  60. Zito, P.: 2-C*-categories with non-simple units. PhD thesis, available at http://arxiv.org/abs/math/0509266v1, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Schreiber.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, U. AQFT from n-Functorial QFT. Commun. Math. Phys. 291, 357–401 (2009). https://doi.org/10.1007/s00220-009-0840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0840-2

Keywords

Navigation