Skip to main content
Log in

On the Distinguishability of Random Quantum States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop two analytic lower bounds on the probability of success p of identifying a state picked from a known ensemble of pure states: a bound based on the pairwise inner products of the states, and a bound based on the eigenvalues of their Gram matrix. We use the latter, and results from random matrix theory, to lower bound the asymptotic distinguishability of ensembles of n random quantum states in d dimensions, where n/d approaches a constant. In particular, for almost all ensembles of n states in n dimensions, p > 0.72. An application to distinguishing Boolean functions (the “oracle identification problem”) in quantum computation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of boolean oracles. Proc. STACS ’04, LNCS 2996, Berlin-Heidelberg: Springer, 2004, pp. 105–116

  2. Bai Z.D. (1993). Convergence rate of expected spectral distributions of large random matrices. Part. II Sample covariance matrices. Ann. Prob. 21: 649–672

    MATH  Google Scholar 

  3. Bai Z.D. (1999). Methodologies in spectral analysis of large dimensional random matrices. a review. Statist. Sinica 9: 611–677

    MATH  MathSciNet  Google Scholar 

  4. Barnum H. and Knill E. (2002). Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43: 2097–2106

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bennett C.H., Hayden P., Leung D., Shor P. and Winter A. (2003). Remote preparation of quantum states. IEEE Trans. Inform. Theory 51: 56–74

    Article  MathSciNet  Google Scholar 

  6. Buhrman H., Cleve R., Watrous J. and de Wolf R. (2001). Quantum fingerprinting. Phys. Rev. Lett. 87: 167902

    Article  ADS  Google Scholar 

  7. Davies E.B. (1978). Information and quantum measurement. IEEE Trans. Inform. Theory 24: 596–599

    Article  MATH  MathSciNet  Google Scholar 

  8. Eldar Y.C. and Forney G.D. (2001). On quantum detection and the square-root measurement. IEEE Trans. Inform. Theory 47: 858–872

    Article  MATH  MathSciNet  Google Scholar 

  9. Eldar Y.C., Megretski A. and Verghese G. (2003). Designing optimal quantum detectors via semidefinite programming. IEEE Trans. Inform. Theory 49: 1007–1012

    Article  MATH  MathSciNet  Google Scholar 

  10. Gradshteyn I.S. and Ryzhik I.M. (1980). Table of integrals, series products. Academic Press, New York

    MATH  Google Scholar 

  11. Hausladen P., Jozsa R., Schumacher B., Westmoreland M. and Wootters W. (1996). Classical information capacity of a quantum channel. Phys. Rev. A 54: 1869–1876

    Article  MathSciNet  ADS  Google Scholar 

  12. Hausladen P. and Wootters W. (1994). A “pretty good” measurement for distinguishing quantum states. J. Mod. Opt. 41: 2385

    MATH  MathSciNet  ADS  Google Scholar 

  13. Hayden P., Leung D.W. and Winter A. (2006). Aspects of generic entanglement. Commun. Math. Phys. 265: 95–117

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Helstrom C.W. (1976). Quantum Detection and Estimation Theory. Academic Press, New York

    Google Scholar 

  15. Holevo, A.S.: Bounds for the quantity of information transmittable by a quantum communications channel. Problemy Peredachi Informatsii 9, no. 3, 3–11 (1993) English translation: Problems of Information Transmission 9, 177–183 (1973)

  16. Horn R.A. and Johnson C.R. (1985). Matrix Analysis. University Press, Cambridge

    MATH  Google Scholar 

  17. Jozsa R. and Schlienz J. (2000). Distinguishability of states and von Neumann entropy. Phys. Rev. A 62: 012301

    Article  MathSciNet  ADS  Google Scholar 

  18. Ledoux, M.: The concentration of measure phenomenon. AMS Mathematical Surveys and Monographs 89, Providence, RI: Amer. Math. Soc. 2001

  19. Marčenko V.A. and Pastur L.A. (1967). Distributions of eigenvalues of some sets of random matrices. Math. USSR-Sb. 1: 507–536

    Google Scholar 

  20. Nielsen M.A. and Chuang I.L. (2000). Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundations of statistical mechanics. http:// arXiv.org/list/quant-ph/0511225 (2005)

  22. Wootters W.K. (1990). Random quantum states. Found. Phys. 20: 1365

    Article  MathSciNet  Google Scholar 

  23. Zyczkowski K. and Sommers H. (2005). Average fidelity between random quantum states. Phys. Rev. A 71: 032313

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley Montanaro.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanaro, A. On the Distinguishability of Random Quantum States. Commun. Math. Phys. 273, 619–636 (2007). https://doi.org/10.1007/s00220-007-0221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0221-7

Keywords

Navigation