Skip to main content
Log in

Perturbative Gauge Theory as a String Theory in Twistor Space

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Perturbative scattering amplitudes in Yang-Mills theory have many unexpected properties, such as holomorphy of the maximally helicity violating amplitudes. To interpret these results, we Fourier transform the scattering amplitudes from momentum space to twistor space, and argue that the transformed amplitudes are supported on certain holomorphic curves. This in turn is apparently a consequence of an equivalence between the perturbative expansion of = 4 super Yang-Mills theory and the D-instanton expansion of a certain string theory, namely the topological B model whose target space is the Calabi-Yau supermanifold

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parke, S., Taylor, T.: An Amplitude for N Gluon Scattering. Phys. Rev. Lett. 56, 2459 (1986)

    Article  Google Scholar 

  2. Berends, F.A., Giele, W.T.: Recursive Calculations for Processes with N. Gluons. Nucl. Phys. B306, 759 (1988)

  3. DeWitt, B.: Quantum Theory of Gravity, III: Applications of the Covariant Theory. Phys. Rev. 162, 1239 (1967)

    Article  MATH  Google Scholar 

  4. Bern, Z., Dixon, L., Kosower, D.: Progress in One-Loop QCD Computations. Ann. Rev. Nucl. Part. Sci. 46, 109 (1996)

    Article  Google Scholar 

  5. Brink, L., Scherk, J., Schwarz, J.H.: Supersymmetric Yang-Mills Theories. Nucl. Phys. B121, 77 (1977)

  6. Anastasiou, C., Bern, Z., Dixon, L., Kosower, D.: Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory. Phys. Rev. Lett. 91, 251–602 (2003); Bern, Z., De Freitas, A., Dixon, L.: Two Loop Helicity Amplitudes for Quark Gluon Scattering in QCD and Gluino Gluon Scattering in Supersymmetric Yang-Mills Theory. JHEP 0306, 028 (2003)

    Google Scholar 

  7. Penrose, R.: Twistor Algebra. J. Math. Phys. 8, 345 (1967)

    MATH  Google Scholar 

  8. Penrose, R.: The Central Programme of Twistor Theory. Chaos, Solitons, and Fractals 10, 581 (1999)

    Google Scholar 

  9. Ferber, A.: Supertwistors and Conformal Supersymmetry. Nucl. Phys. B132, 55 (1978)

  10. Witten, E.: An Interpretation of Classical Yang-Mills Theory. Phys. Lett. B77, 394 (1978)

    Google Scholar 

  11. Isenberg, J., Yasskin, P.B., Green, P.S.: Nonselfdual Gauge Fields. Phys. Lett. B78, 464 (1978)

    Google Scholar 

  12. Nair, V.: A Current Algebra for Some Gauge Theory Amplitudes. Phys. Lett. B214, 215 (1988)

    Google Scholar 

  13. Maldacena, J.: The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)

    MATH  Google Scholar 

  14. ’t Hooft, G.: A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B72, 461 (1974)

  15. MacCallum, M.A.H., Penrose, R.: Twistor Theory: An Approach to the Quantization of Fields and Space-Time. Phys. Rept. 6C, 241 (1972)

    Google Scholar 

  16. Hodges, A.P., Huggett, S.: Twistor Diagrams. Surveys in High Energy Physics 1, 333 (1980); Hodges, A.: Twistor Diagrams. Physica 114A, 157 (1982); Twistor Diagrams. In: S.A. Huggett, et al. (eds.), The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, Oxford: Oxford University Press, 1998

    Google Scholar 

  17. Bjorken, J.D., Chen, M.C.: High Energy Trident Production with Definite Helicities. Phys. Rev. 154, 1335 (1966)

    Article  Google Scholar 

  18. Reading Henry, G.: Trident Production with Nuclear Targets. Phys. Rev. 154, 1534 (1967)

    Article  Google Scholar 

  19. Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Wu, T.T.: Single Bremsstrahlung Processes in Gauge Theory. Phys. Lett. 103B, 124 (1981); De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Helicity Amplitudes for Massless QED. Phys. Lett. B105, 215 (1981); Nucl. Phys. B206, 53 (1982); Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Multiple Bremsstrahlung in Gauge Theories at High-Energies. 2. Single Bremsstrahlung. Nucl. Phys. B206, 61 (1982)

    Article  Google Scholar 

  20. Kleis, R., Stirling, W.J.: Spinor Techniques for Calculating Proton Anti-Proton to W or Z Plus Jets. Nucl. Phys. B262, 235 (1985)

  21. Gunion, J.F., Kunzst, Z.: Improved Analytic Techniques for Tree Graph Calculations and the Process. Phys. Lett. 161B, 333 (1985)

    Article  Google Scholar 

  22. Berends, F.A., Giele, W-T.: The Six Gluon Process as an Example of Weyl-van der Waerden Spinor Calculus. Nucl. Phys. B294, 700 (1987)

    Google Scholar 

  23. Xu, Z., Zhang, D.-H., Chang, L.: Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories. Nucl. Phys. B291, 392 (1987)

    Google Scholar 

  24. Chalmers, G., Siegel, W.: Simplifying Algebra in Feynman Graphs, Part I: Spinors. Phys. Rev. D59, 045012 (1999), Part II: Spinor Helicity from the Light Cone. Phys. Rev. D59, 045013 (1999), Part III: Massive Vectors. Phys. Rev. D63, 125027 (2001)

  25. Mangano, M.L., Parke, S.J.: Multiparton Amplitudes in Gauge Theories. Phys. Rept. 200, 301 (1991)

    Article  Google Scholar 

  26. Dixon, L.: Calculating Scattering Amplitudes Efficiently. TASI Lectures, 1995, http:// arxiv.org/abs/hep-ph/9601359, 1996

  27. Witten, L.: Invariants of General Relativity and the Classification of Spaces. Phys. Rev. (2) 113, 357 (1959)

    Google Scholar 

  28. Penrose, R., Rindler, W.: Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, Volume 2, Spinor and Twistor Methods in Spacetime Geometry. Cambridge: Cambridge University Press, 1986

  29. Ward, R.S., Wells, R.O.Jr.: Twistor Geometry and Field Theory. Cambridge: Cambridge University Press, 1991

  30. Hughston, L.P.: Twistors and Particles. Lecture Notes in Physics 97, Berlin: Springer-Verlag, 1989

  31. Bailey, T.N., Baston, R.J. (eds.): Twistors in Mathematics and Physics. London: London Mathematical Society Lecture Notes Series, 156, 1990

  32. Huggett, S.A., Tod, K.P.: An Introduction to Twistor Theory. London Mathematical Society Student Texts 4, New York: Cambridge Univ. Press, 1985

  33. Penrose, R.: The Nonlinear Graviton. Gen. Rel. Grav. 7, 171 (1976)

    Google Scholar 

  34. Ward, R.: On Self-Dual Gauge Fields. Phys. Lett. 61A, 81 (1977)

    Article  MATH  Google Scholar 

  35. Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-Duality in Four-Dimensional Riemannian Geometry. Proc. Roy. Soc. London Ser. A 362, 425 (1978)

    MATH  Google Scholar 

  36. Atiyah, M.F.: Geometry of Yang-Mills Fields. Lezioni Fermiane, Pisa: Academia Nazionale dei Lincei and Scuola Normale Superiore, 1979

  37. Penrose, R.: Twistor Quantization and Curved Spacetime. Int. J. Theor. Phys. 1, 61 (1968)

    Google Scholar 

  38. Mangano, M., Parke, S., Xu, Z.: Duality and Multi-Gluon Scattering. Nucl. Phys. B298, 653 (1988)

    Google Scholar 

  39. Berends, F.A., Giele, W.T., Kuijf, H.: Exact and Approximate Expressions for Multi-Gluon Scattering. Nucl. Phys. B333, 120 (1990)

    Google Scholar 

  40. Bern, Z., Dixon, L., Dunbar, D., Kosower, D.A.: One-Loop N-Point Gauge Theory Amplitudes. Unitarity and Collinear Limits, hep-ph/9403226

  41. Bern, Z., Dixon, L., Kosower, D.: One Gluon Corrections to Five Gluon Amplitudes. Phys. Rev. Lett. 70, 2677 (1993)

    Article  Google Scholar 

  42. Bern, Z., Dixon, L., Kosower, D.A.: In: M.B. Halpern, et al. (eds.), Strings 1993, Singapore: World Scientific, 1995; Bern, Z., Chalmers, G., Koxon, L., Kosower, D.A.: Phys. Rev. Lett. 72, 2134 (1994)

    Google Scholar 

  43. Mahlon, G.: Multigluon Helicity Amplitudes Involving a Quark Loop. Phys. Rev. D49, 4438 (1994)

    Google Scholar 

  44. Mahlon, G., Yan, T.-M.: Multi-Photon Production at High Energies in the Standard Model: I. Phys. Rev. D47, 1776 (1993)

  45. Bern, Z., Kosower, D.: The Computation of Loop Amplitudes in Gauge Theories. Nucl. Phys. B379, 451 (1992)

    Google Scholar 

  46. Bern, Z., Dixon, L., Dunbar, D.C., Kosower, D.A.: One-loop Gauge Theory Amplitudes with an Arbitrary Number of External Legs, hep-ph/9405248

  47. Berends, F.A., Giele, W.T., Kuijf, H.: On Relations Between Multi-Gluon and Multi-Graviton Scattering. Phys. Lett. 211B, 91 (1988)

    Article  Google Scholar 

  48. Witten, E.: Mirror Manifolds and Topological Field Theory. hep-th/9112056, In: S.-T. Yau, (ed.), Mirror Symmetry, Cambridge, MA: International Press, 1998

  49. Hori, K., et al. (eds.): Mirror symmetry. Providence, RI: American Mathematical Society, 2003

  50. Witten, E.: Chern-Simons Gauge Theory as a String Theory. Prog. Math. 133, 637 (1995)

    MATH  Google Scholar 

  51. Dijkgraaf, R., Vafa, C.: Matrix Models, Topological Strings, and Supersymmetric Gauge Theories. Nucl. Phys. B644, 3 (2002)

    Google Scholar 

  52. Aganagic, M., Dijkgraaf, R., Klemm, A., Marino, M., Vafa, C.: Topological Strings and Integrable Hierarchies. hep-th/0312085

  53. D’Adda, A., Di Vecchia, P., Luscher, M.: Confinement and Chiral Symmetry Breaking in Models with Quarks. Nucl. PHys. B152, 125 (1979)

    Google Scholar 

  54. Witten, E.: Instantons, the Quark Model, and the 1/N Expansion. Nucl. Phys. B149, 285 (1979)

  55. Zumino, B.: Supersymmetry and Kahler Manifolds. Phys. Lett. B87, 203 (1979)

    Google Scholar 

  56. Movshev, M., Schwarz, A.: On Maximally Supersymmetric Yang-Mills Theory. hep-th/0311132

  57. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic Anomalies in Topological Field Theories. Nucl. Phys. B405, 279 (1993); Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes. Commun. Math. Phys. B165, 311 (1994)

  58. Grisaru, M., Rocek, M., Siegel, W.: Superloops 3, Beta 0: A Calculation in N=4 Yang-Mills Theory. Phys. Rev. Lett. 45, 1063 (1980)

    Article  Google Scholar 

  59. Avdeev, L.V., Tarasov, O.V.: The Three Loop Beta Function in the N=1, N=2, N=4 Supersymmetric Yang-Mills Theories. Phys. Lett. B112, 356 (1982)

    Google Scholar 

  60. Mandelstam, S.: Light Cone Superspace and the Ultraviolet Finiteness of the N=4 Model. Nucl. Phys. B213, 149 (1983)

    Google Scholar 

  61. Krasnov, K.: Twistors, CFT, and Holography. hep-th/0311162

  62. Atiyah, M.F., Hitchin, N.: The Geometry and Dynamics of Magnetic Monopoles. Princeton, NJ: Princeton University Press, 1988

  63. Polchinski, J.: Dirichlet Branes and Ramond-Ramond Charges. Phys. Rev. Lett. 75, 4724 (1995)

    Article  MATH  Google Scholar 

  64. Lazaroiu, C.: Holomorphic Matrix Models. hep-th/0303008.

  65. Siegel, W.: The = 2(4) String is Self-Dual = 4 Yang-Mills. Phys. Rev. D46, R3235 (1992); Self-Dual = 8 Supergravity as Closed = 2(4) Strings, hep-th/9207043

  66. Chalmers, G., Siegel, W.: The Self-Dual Sector of QCD Amplitudes. hep-th/9606061

  67. Witten, E.: Small Instantons in String Theory. Nucl. Phys. B460, 541 (1996)

  68. Douglas, M.R.: Gauge Fields and D-Branes. J. Geom. Phys. 28, 255 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  69. Fradkin, E.S., Tseytlin, A.A.: Conformal Supergravity. Phys. Rept. 119, 233 (1985)

    Article  Google Scholar 

  70. Salam, A., Sezgin, E.: Supergravities in Diverse Dimensions. Vol. 2, Singapore: World Scientific, 1989

  71. Bena, I., Polchinski, J., Roiban, R.: Hidden Symmetries of the AdS5× S5 Superstring. hep-th/0305116

  72. Dolan, L., Nappi, C.R., Witten, E.: A Relation Among Approaches to Integrability in Superconformal Yang-Mills Theory. JHEP 0310, 017 (2003)

    Article  Google Scholar 

  73. Luscher, M., Pohlmeyer, K.: Scattering of Massless Lumps and Nonlocal Charges in the Two-Dimensional Classical Non-Linear Sigma Model. Nucl. Phys. B137, 46 (1978)

    Google Scholar 

  74. de Vega, H.J., Eichenherr, H., Maillet, J.M.: Yang-Baxter Algebras of Monodromy Matrices in Integrable Quantum Field Theories. Nucl. Phys. B240, 377 (1984)

  75. Berg, B., Weisz, P.: Exact S Matrix of the Adjoint SU(N) Representation. Commun. Math. Phys. 67, 241 (1979)

    Google Scholar 

  76. Goldschmidt, Y., Witten, E.: Conservation Laws in Some Two-Dimensional Models. Phys. Lett. 91B, 392 (1980)

    Article  Google Scholar 

  77. Abdalla, E.: In: N. Sanchez, (ed.), Non-linear Equations in Classical and Quantum Field Theory. Springer Lectures in Physics, Vol. 226, Berlin-Heidelberg-New York: Springer, 1985, p. 140; Abdalla, E., Abdalla, M.C.B., Gomes, M.: Phys. Rev. D25, 452 (1982), D27, 825 (1983)

  78. Berkovits, N.: Super Poincaré Covariant Quantization of the Superstring. JHEP 0004, 018 (2000), hep-th/0001035, Covariant Quantization of the Superparticle Using Pure Spinors. hep-th/0105050, JHEP 0109, 016 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.R. Douglas

Dedicated to Freeman Dyson for his 80th birthday

Acknowledgement I am indebted to N. Berkovits for numerous helpful discussions of some of these ideas and pointing out a number of significant references, to F. Cachazo for extensive assistance with computer algebra, to L. Dixon for answering many queries about perturbative Yang-Mills theory, and to M. F. Atiyah and R. Penrose for mathematical consultations. This work was supported in part by NSF Grant PHY-0070928.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witten, E. Perturbative Gauge Theory as a String Theory in Twistor Space. Commun. Math. Phys. 252, 189–258 (2004). https://doi.org/10.1007/s00220-004-1187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1187-3

Keywords

Navigation