Skip to main content
Log in

On the Boltzmann Equation for Diffusively Excited Granular Media

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Boltzmann equation for a space-homogeneous gas of inelastic hard spheres, with a diffusive term representing a random background forcing. Under the assumption that the initial datum is a nonnegative L 2( N) function, with bounded mass and kinetic energy (second moment), we prove the existence of a solution to this model, which instantaneously becomes smooth and rapidly decaying. Under a weak additional assumption of bounded third moment, the solution is shown to be unique. We also establish the existence (but not uniqueness) of a stationary solution. In addition we show that the high-velocity tails of both the stationary and time-dependent particle distribution functions are overpopulated with respect to the Maxwellian distribution, as conjectured by previous authors, and we prove pointwise lower estimates for the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkeryd, L.: On the Boltzmann equation. II. The full initial value problem. Arch. Rational Mech. Anal. 45, 17–34 (1972)

    MATH  Google Scholar 

  2. Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91, 979–990 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bizon, C., Shattuck, M.D., Swift, J.B., Swinney, H.L.: Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60, 4340–4351 (1999), ArXiv:cond-mat/9904132

    Article  Google Scholar 

  4. Bobylev, A.V.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Statist. Phys. 88, 1183–1214 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys. 98, 743–773 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobylev, A.V., Cercignani, C.: Moment equations for a granular material in a thermal bath. J. Statist. Phys. 106, 547–567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobylev, A.V., Gamba, I.M., Panferov, V.: Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions. In preparation

  8. Brilliantov, N.V., Poeschel, T.: Granular gases with impact-velocity dependent restitution coefficient. In: Granular Gases, T. Poeschel, S. Luding (eds.), Lecture Notes in Physics, Vol. 564, Berlin: Springer, 2000, pp. 100–124, ArXiv:cond-mat/0204105

  9. Carrillo, J.A., Cercignani, C., Gamba, I.M.: Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E (3), 62, 7700–7707 (2000)

    Google Scholar 

  10. Cercignani, C.: Recent developments in the mechanics of granular materials. In: Fisica matematica e ingegneria delle strutture, Bologna: Pitagora Editrice, 1995, pp. 119–132

  11. Cercignani, C., Illner, R., Stoica, C.: On diffusive equilibria in generalized kinetic theory. J. Statist. Phys. 105, 337–352 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desvillettes, L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Rational Mech. Anal. 123, 387–404 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness. Comm. Partial Diff. Eqs. 25, 179–259 (2000)

    Google Scholar 

  14. Di Blasio, G.: Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non Maxwellian case. Commun. Math. Phys. 38, 331–340 (1974)

    MATH  Google Scholar 

  15. Elmroth, T.: Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range. Arch. Ra. Mech. Anal. 82, 1–12 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Ernst, M.H., Brito, R.: Velocity tails for inelastic Maxwell models (2001), ArXiv:cond-mat/0111093

  17. Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Stat. Phys., to appear (2002), ArXiv:cond-mat/0112417

  18. Gamba, I.M., Panferov, V., Villani, C.: Work in progress

  19. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Vol. 224 of Grundlehren der Mathematischen Wissenschaften, Berlin: Springer-Verlag, second~ed., 1983

  20. Goldhirsch, I.: Rapid granular flows: kinetics and hydrodynamics. In: Modeling in applied sciences, Model. Simul. Sci. Eng. Technol., Boston, MA: Birkhäuser Boston, 2000, pp. 21–79

  21. Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. I. General hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995)

    MATH  Google Scholar 

  22. Gustafsson, T.: Global L p-properties for the spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal. 103, 1–38 (1988)

    MATH  Google Scholar 

  23. Jenkins, J.T.: Kinetic theory for nearly elastic spheres. In: Physics of dry granular media (Cargèse, 1997), NATO Adv. Sci. Inst. Ser. E Appl. Sci., 350, Dordrecht: Kluwer Acad. Publ., 1998, pp. 353–369

  24. Jenkins, J.T., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rational Mech. Anal. 87, 355–377 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Jenkins, J.T., Savage, S.B.: A theory for rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187–202 (1983)

    MATH  Google Scholar 

  26. Krapivsky, P.L., Ben-Naim, E.: Multiscaling in infinite dimensional collision processes. Phys. Rev. E 61, R5 (2000), ArXiv:cond-mat/9909176

  27. Krapivsky, P.L., Ben-Naim, E.: Nontrivial velocity distributions in inelastic gases. J. Phys. A 35, L147 (2002), ArXiv:cond-mat/0111044

  28. Kudrolli, A., Henry, J.: Non-Gaussian velocity distributions in excited granular matter in the absence of clustering. Phys. Rev. E 62, R1489 (2000), ArXiv:cond-mat/0001233

  29. Ladyzhenskaya, O., Uraltseva, N., Solonnikov, V.: Linear and quasi-linear equations of parabolic type. Vol. 23 of AMS Translations of Mathematical Monographs, Providence, RI: Am. Math. Soc., 1988

  30. Losert, W., Cooper, D., Delour, J., Kudrolli, A., Gollub, J.: Velocity statistics in excited granular media. Chaos 9, 682–690 (1999), ArXiv:cond-mat/9901203

    Article  MATH  Google Scholar 

  31. Lu, X.: Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation. J. Stat. Phys. 96, 765–796 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non-Linéaire 16, 467–501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moon, S.J., Shattuck, M.D., Swift, J.B.: Velocity distributions and correlations in homogeneously heated granular media. Phys. Rev. E 64, 031303–1–031303–10 (2001) ArXiv:cond-mat/0105322

    Article  Google Scholar 

  34. Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. To appear in Archive for Rational Mechanics and Analysis

  35. Povzner, A.J.: On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.) 58(100), 65–86 (1962)

    MATH  Google Scholar 

  36. Rouyer, F., Menon, N.: Velocity fluctuations in a homogeneous 2d granular gas in steady state. Phys. Rev. Lett. 85, 3676 (2000)

    Article  Google Scholar 

  37. Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996)

    Article  Google Scholar 

  38. van Noije, T., Ernst, M.: Velocity distributions in homogeneously cooling and heated granular fluids. Gran. Matt. 1, 57–8 (1998), ArXiv:cond-mat/9803042

    Article  Google Scholar 

  39. Villani, C.: A survey of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Mechanics, Friedlander, S., Serre, D. (eds.), Vol. 1, Amsterdam: Elsevier, 2002, ch. 2

  40. Wennberg, B.: Entropy dissipation and moment production for the Boltzmann equation. J. Statist. Phys. 86, 1053–1066 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Williams, D.R.M., MacKintosh, F.C.: Driven granular media in one dimension: Correlations and equation of state. Phys. Rev. E 54, 9–12 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamba, I., Panferov, V. & Villani, C. On the Boltzmann Equation for Diffusively Excited Granular Media. Commun. Math. Phys. 246, 503–541 (2004). https://doi.org/10.1007/s00220-004-1051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1051-5

Keywords

Navigation