Skip to main content
Log in

Influence of common and excessive enzymatic treatment on juice yield and anthocyanin content and profile during bilberry (Vaccinium myrtillus L.) juice production

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Treatment with cell wall-degrading enzymes is an important step during juice production to enhance juice yield and the amount of value-adding compounds like polyphenols. Enzymatic side activities may lead to unintended alterations of the polyphenol profile. We determined the effects of enzyme treatment on juice yield and content and profile of anthocyanins using four commercial pectinolytic and two cellulolytic enzymes during bilberry juice production. While enzyme dosage at commercial level (0.5 nkat/g) caused only small increases in juice yield but considerably higher anthocyanin yields, significant changes in the anthocyanin profile could be observed, which were related to the glycoside type as well as to the aglycone. Application of excessive enzyme dosage (10 nkat/g) significantly improved both juice yield and total anthocyanin content. Extractability of anthocyanins seems to be more relevant to profile changes during juice processing when usual enzyme dosages are applied, whereas excessive dosages lead to changes caused by enzymatic side activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kähkönen MP, Heinämäki J, Ollilainen V, Heinonen M (2003) Berry anthocyanins: isolation, identification and antioxidant activities. J Sci Food Agric 83:1403–1411

    Article  Google Scholar 

  2. Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279

    Article  Google Scholar 

  3. Müller D, Schantz M, Richling E (2012) High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. J Food Sci 77:340–345

    Article  Google Scholar 

  4. Laaksonen O, Sandell M, Kallio H (2010) Chemical factors contributing to orosensory profiles of bilberry (Vaccinium myrtillus) fractions. Eur Food Res Technol 231:271–285

    Article  CAS  Google Scholar 

  5. Howard LR, Castrodale C, Brownmiller C, Mauromoustakos A (2010) Jam processing and storage effects on blueberry polyphenolics and antioxidant capacity. J Agric Food Chem 58:4022–4029

    Article  CAS  Google Scholar 

  6. Može S, Polak T, Gašperlin L, Koron D, Vanzo A, Poklar Ulrih N, Abram V (2011) Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J Agric Food Chem 59:6998–7004

    Article  Google Scholar 

  7. Fügel R, Carle R, Schieber A (2005) Quality and authenticity control of fruit purées, fruit preparations and jams—a review. Trends Food Sci Technol 16:433–441

    Article  Google Scholar 

  8. Penman KG, Halstead CW, Matthias A, de Voss JJ, Stuthe JMU, Bone KM, Lehmann RP (2006) Bilberry adulteration using the food dye amaranth. J Agric Food Chem 54:7378–7382

    Article  CAS  Google Scholar 

  9. Filip M, Vlassa M, Copaciu F, Coman V (2012) Identification of anthocyanins and anthocyanidins from berry fruits by chromatographic and spectroscopic techniques to establish the juice authenticity from market. J Planar Chromatogr Mod TLC 25:534–541

    Article  CAS  Google Scholar 

  10. Primetta AK, Jaakola L, Ayaz FA, Inceer H, Riihinen KR (2013) Anthocyanin fingerprinting for authenticity studies of bilberry (Vaccinium myrtillus L.). Food Control 30:662–667

    Article  CAS  Google Scholar 

  11. Gardana C, Ciappellano S, Marinoni L, Fachechi C, Simonetti P (2014) Bilberry adulteration: identification and chemical profiling of anthocyanins by different analytical methods. J Agric Food Chem 62:10998–11004

    Article  CAS  Google Scholar 

  12. González-Neves G, Favre G, Piccardo D, Gil G (2015) Anthocyanin profile of young red wines of Tannat, Syrah and Merlot made using maceration enzymes and cold soak. Int J Food Sci Technol 51:260–267

    Article  Google Scholar 

  13. Viljanen K, Heiniö R, Juvonen R, Kössö T, Puupponen-Pimiä R (2014) Relation of sensory perception with chemical composition of bioprocessed lingonberry. Food Chem 157:148–156

    Article  CAS  Google Scholar 

  14. Skrede G, Wrolstad RE, Durst RW (2000) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J Food Sci 65:357–364

    Article  CAS  Google Scholar 

  15. Grassin C, Coutel Y (2009) In: Whitehurst RJ, van Oort M (eds) Enzymes in food technology, 1st edn. Wiley, Oxford

    Google Scholar 

  16. Sandri IG, Lorenzoni CMT, Fontana RC, da Silveira MM (2013) Use of pectinases produced by a new strain of Aspergillus niger for the enzymatic treatment of apple and blueberry juice. LWT Food Sci Technol 51:469–475

    Article  CAS  Google Scholar 

  17. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55

    Article  CAS  Google Scholar 

  18. Landbo A, Meyer AS (2001) Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J Agric Food Chem 49:3169–3177

    Article  CAS  Google Scholar 

  19. Kashyap D, Vohra P, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77:215–227

    Article  CAS  Google Scholar 

  20. Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  CAS  Google Scholar 

  21. Albersheim P, Darvill AG, O’Neill MA, Schols HA, Voragen Alphons G J (1996) An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. Prog Biotechnol 14:47–55

    Article  CAS  Google Scholar 

  22. Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37:47–73

    Article  CAS  Google Scholar 

  23. Yadav S, Yadav PK, Yadav D, Yadav KD (2009) Pectin lyase: a review. Process Biochem 44:1–10

    Article  Google Scholar 

  24. Huang HT (1955) Fruit color destruction, decolorization of anthocyanins by fungal enzymes. J Agric Food Chem 3:141–146

    Article  CAS  Google Scholar 

  25. Wightman JD, Wrolstad RE (1996) β-Glucosidase activity in juice-processing enzymes based on anthocyanin analysis. J Food Sci 61:544–548

    Article  CAS  Google Scholar 

  26. Buchert J, Koponen JM, Suutarinen M, Mustranta A, Lille M, Törrönen R, Poutanen K (2005) Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J Sci Food Agric 85:2548–2556

    Article  CAS  Google Scholar 

  27. Koponen JM, Buchert J, Poutanen KS, Torronen AR, Törrönen AR (2008) Effect of pectinolytic juice production on the extractability and fate of bilberry and black currant anthocyanins. Eur Food Res Technol 227:485–494

    Article  CAS  Google Scholar 

  28. Pricelius S, Murkovic M, Souter P, Guebitz GM (2009) Substrate specificities of glycosidases from Aspergillus species pectinase preparations on elderberry anthocyanins. J Agric Food Chem 57:1006–1012

    Article  CAS  Google Scholar 

  29. Fernandes A, Brás NF, Mateus N, de Freitas V (2014) Understanding the molecular mechanism of anthocyanin binding to pectin. Langmuir 30:8516–8527

    Article  CAS  Google Scholar 

  30. Koponen JM, Happonen AM, Auriola S, Kontkanen H, Buchert J, Poutanen KS, Törrönen AR (2008) Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing. J Agric Food Chem 56:3136–3144

    Article  CAS  Google Scholar 

  31. Heffels P, Weber F, Schieber A (2015) Influence of accelerated solvent extraction and ultrasound-assisted extraction on the anthocyanin profile of different Vaccinium species in the context of statistical models for authentication. J Agric Food Chem 63:7532–7538

    Article  CAS  Google Scholar 

  32. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  33. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  34. Negrulescu A, Patrulea V, Mincea MM, Ionascu C, Vlad-Oros BA, Ostafe V (2012) Adapting the reducing sugars method with dinitrosalicylic acid to microtiter plates and microwave heating. J Braz Chem Soc 23:2176–2182

    Article  CAS  Google Scholar 

  35. Wood IP, Elliston A, Ryden P, Bancroft I, Roberts IN, Waldron KW (2012) Rapid quantification of reducing sugars in biomass hydrolysates: improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 44:117–121

    Article  CAS  Google Scholar 

  36. Sadana JC, Shewale JG, Deshpande MV (1980) High cellobiase and xylanase production by Sclerotium rolfsii UV-8 mutant in submerged culture. Appl Environ Microbiol 39:935–936

    CAS  Google Scholar 

  37. Puupponen-Pimiä R, Nohynek L, Ammann S, Oksman-Caldentey K, Buchert J (2008) Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry. J Agric Food Chem 56:681–688

    Article  Google Scholar 

  38. Bloor SJ (2001) Deep blue anthocyanins from blue Dianella berries. Phytochemistry 58:923–927

    Article  CAS  Google Scholar 

  39. Bruchmann A, Fauveau C (2009) In: Whitehurst RJ, van Oort M (eds) Enzymes in food technology, 1st edn. Wiley, Oxford

    Google Scholar 

  40. Laaksonen O, Sandell M, Nordlund E, Heiniö R, Malinen H, Jaakkola M, Kallio H (2012) The effect of enzymatic treatment on blackcurrant (Ribes nigrum) juice flavour and its stability. Food Chem 130:31–41

    Article  CAS  Google Scholar 

  41. Bagger-Jørgensen R, Meyer AS (2004) Effects of different enzymatic pre-press maceration treatments on the release of phenols into blackcurrant juice. Eur Food Res Technol 219:620–629

    Article  Google Scholar 

  42. Landbo A, Meyer AS (2004) Effects of different enzymatic maceration treatments on enhancement of anthocyanins and other phenolics in black currant juice. Innov Food Sci Emerg Technol 5:503–513

    Article  CAS  Google Scholar 

  43. Landbo A, Kaack K, Meyer AS (2007) Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice. Innov Food Sci Emerg Technol 8:135–142

    Article  CAS  Google Scholar 

  44. Mieszczakowska-Frąc M, Markowski J, Zbrzeźniak M, Płocharski W (2012) Impact of enzyme on quality of blackcurrant and plum juices. LWT Food Sci Technol 49:251–256

    Article  Google Scholar 

  45. Pap N, Pongrácz E, Jaakkola M, Tolonen T, Virtanen V, Turkki A, Horváth-Hovorka Z, Vatai G, Keiski RL (2010) The effect of pre-treatment on the anthocyanin and flavonol content of black currant juice (Ribes nigrum L.) in concentration by reverse osmosis. J Food Eng 98:429–436

    Article  CAS  Google Scholar 

  46. Kapasakalidis PG, Rastall RA, Gordon MH (2009) Effect of a cellulase treatment on extraction of antioxidant phenols from black currant (Ribes nigrum L.) pomace. J Agric Food Chem 57:4342–4351

    Article  CAS  Google Scholar 

  47. Brownmiller C, Howard LR, Prior RL (2008) Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J Food Sci 73:H72–H79

    Article  CAS  Google Scholar 

  48. Volden J, Borge GIA, Bengtsson GB, Hansen M, Thygesen IE, Wicklund T (2008) Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chem 109:595–605

    Article  CAS  Google Scholar 

  49. Hager A, Howard LR, Prior RL, Brownmiller C (2008) Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products. J Food Sci 73:H134–H140

    Article  CAS  Google Scholar 

  50. Lee J, Durst RW, Wrolstad RE (2002) Impact of juice processing on blueberry anthocyanins and polyphenolics: comparison of two pretreatments. J Food Sci 67:1660–1667

    Article  CAS  Google Scholar 

  51. Srivastava A, Akoh CC, Yi W, Fischer J, Krewer G (2007) Effect of storage conditions on the biological activity of phenolic compounds of blueberry extract packed in glass bottles. J Agric Food Chem 55:2705–2713

    Article  CAS  Google Scholar 

  52. Patras A, Brunton NP, Da Pieve S, Butler F (2009) Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov Food Sci Emerg Technol 10:308–313

    Article  CAS  Google Scholar 

Download references

Funding

This research project was financially supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn). Project AiF 16645 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Weber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (TIFF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heffels, P., Bührle, F., Schieber, A. et al. Influence of common and excessive enzymatic treatment on juice yield and anthocyanin content and profile during bilberry (Vaccinium myrtillus L.) juice production. Eur Food Res Technol 243, 59–68 (2017). https://doi.org/10.1007/s00217-016-2722-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2722-0

Keywords

Navigation