Skip to main content
Log in

Phenolic profiling of green lentil (Lens culinaris Medic.) seeds subjected to long-term storage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Lentils have several desirable properties that make them a healthy and nutritious food option. The visual characteristics of the seed coat are important factors that determine the marketability and, ultimately, the sale price of whole lentils. However, the seed coat colour is not stable and green lentil in particular is known to change over time. While total phenolic content is known to significantly affect darkening of lentil seeds, this study investigated the effect of specific phenolic compounds in the seed darkening process in detail. The phenolic compound profiles of six green lentil cultivars were examined by liquid chromatography–mass spectrometry. To maximize the potential amount of change, the oldest seeds available (harvested in 2000–2007) were compared with fresh seeds (harvested in 2014). Some increases in amounts were noted for some phenolic acids and flavones; however, the most notable result was a decrease in the amount of all flavan-3-ols (e.g. catechin, gallocatechin, and catechin-3-glucoside) and proanthocyanidins (e.g. dimers, trimers, tetramers, and pentamers), 27 compounds in total. Polymerization of these oligomers (the major phenolic compounds in green lentil seed coat tissue) results in their cross-linking with the cell wall. The consequence will be seed darkening and reduction in the extractability of these oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartolomé B, Estrella I, Hernández T (1997) Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. Z Lebensm Unters Forsch 205:290–294. doi:10.1007/s002170050167

    Article  Google Scholar 

  2. Dueñas M, Sun B, Hernández T, Estrella I, Spranger MI (2003) Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J Agric Food Chem 51(27):7999–8004. doi:10.1021/jf0303215

    Article  Google Scholar 

  3. Aguilera Y, Dueñas M, Estrella I, Hernández T, Benitez V, Esteban RM, Martín-Cabrejas MA (2010) Evaluation of phenolic profile and antioxidant properties of pardina lentil as affected by industrial dehydration. J Agric Food Chem 58(18):10101–10108. doi:10.1021/jf102222t

    Article  CAS  Google Scholar 

  4. Zou Y, Chang SKC, Gu Y, Qian SY (2011) Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J Agric Food Chem 59:2268–2276

    Article  CAS  Google Scholar 

  5. Dueñas M, Hernández T, Estrella I (2002) Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur Food Res Technol 215:478–483. doi:10.1007/s00217-002-0603-1

    Article  Google Scholar 

  6. López-Amorós ML, Hernández T, Estrella I (2006) Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Comp Anal 19:277–283

    Article  Google Scholar 

  7. Takeoka GR, Dao LT, Tamura H, Harden LA (2005) Delphinidin 3-O-(2-O-β-d-glucopyranosyl-α-l-arabinopyranoside): a novel anthocyanin identified in beluga black lentils. J Agric Food Chem 53:4932–4937

    Article  CAS  Google Scholar 

  8. SPG (2015) Pulse market report. Saskatchewan Pulse Growers. http://www.saskpulse.com/uploads/content/8199_SPG_PMR_April_2015_OUTPUT.pdf. Accessed 9 Apr 2015

  9. Nozzolillo C, Bezada MD (1984) Browning of lentil seeds, concomitant loss of viability and the possible role of soluble tannins in both phenomena. Can J Plant Sci 64:815–824

    Article  CAS  Google Scholar 

  10. Canadian Grain Commission (2014) Lentils. In: Official grain grading guide CGC industry services, Canada, pp 1–22

  11. Davey BF (2007) Green seed coat colour retention in lentil (Lens culinaris). MSc Thesis, Department of Plant Science, University of Saskatchewan

  12. Statpub.com (2015). http://www.statpub.com/stat/prices/spotbid.html

  13. Andersen ØM, Jordheim M (2010) Chemistry of flavonoid-based colors in plants. In: Mander LN, Liu HW (eds) Comprehensive natural products II: chemistry and biology, vol 3. Elsevier, Oxford, pp 547–614

    Chapter  Google Scholar 

  14. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  Google Scholar 

  15. Christ B, Hörtensteiner S (2014) Mechanism and significance of chlorophyll breakdown. J Plant Growth Regul 33:4–20

    Article  CAS  Google Scholar 

  16. Pirhayati M, Soltanizadeh N, Kadivar M (2011) Chemical and microstructural evaluation of ‘hard-to-cook’ phenomenon in legumes (pinto bean and small-type lentil). Int J Food Sci Technol 46:1884–1890

    Article  CAS  Google Scholar 

  17. Mirali M, Ambrose SJ, Wood SA, Vandenberg A, Purves RW (2014) Development of a fast extraction method and optimization of liquid chromatography–mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J Chromatogr B 969:149–161

    Article  CAS  Google Scholar 

  18. Tar’an B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, Vandenberg A (2003) Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik). Euphytica 134:223–230

    Article  Google Scholar 

  19. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’hiri N, García-Lobato P, Manach C, Knox C, Eisner R, Wishart DS, Scalbert A (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) 2013: bat070. doi:10.1093/database/bat070

  20. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442

    Article  CAS  Google Scholar 

  21. R Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing. http://www.R-project.org/

  22. Canadian Climate Normals 1981–2010 Station Data http://climate.weather.gc.ca/climate_normals/index_e.html

  23. Cakmak T, Atici O, Agar G, Sunar S (2010) Natural aging-related biochemical changes in alfalfa (Medicago Sativa L.) seeds stored for 42 years. Int Res J Plant Sci 1:1–6

    Google Scholar 

  24. Martín-Cabrejas MA, Esteban RM, Perez P, Maina G, Waldron KW (1997) Changes in physicochemical properties of dry Beans (Phaseolus vulgaris L.) during long-term storage. J Agric Food Chem 45:3223–3227. doi:10.1021/jf970069z

    Article  Google Scholar 

  25. Mareuardt RR, Ward AT, Evans LE (1978) Comparative properties of tannin free and tannin containing cultivars of faba beans (Vicia faba). Can J Plant Sci 58:753–760

    Article  Google Scholar 

  26. Zhou S, Sekizaki H, Yang Z, Sawa S, Pan J (2010) Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination. J Agric Food Chem 58(20):10972–10978. doi:10.1021/jf102694k

    Article  CAS  Google Scholar 

  27. Srisuma N, Hammerschmidt R, Uebersax MA, Ruengsakulrach S, Bennink MR, Hosfield GL (1989) Storage induced changes of phenolic acids and the development of hard-to-cook in dry beans (Phaseolus vulgaris, var. Seafarer). J Food Sci 54(2):311–318

    Article  CAS  Google Scholar 

  28. Aaby K, Wrolstad RE, Ekeberg D, Skrede G (2007) Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage. J Agric Food Chem 55:5156–5166

    Article  CAS  Google Scholar 

  29. Carbone K, Giannini B, Picchi V, Lo Scalzo R, Cecchini F (2011) Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chem 127:493–500

    Article  CAS  Google Scholar 

  30. Beninger CW, Gu L, Prior RL, Junk DC, Vandenberg A, Bett KE (2005) Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). J Agric Food Chem 53(20):7777–7782. doi:10.1021/jf050051l

    Article  CAS  Google Scholar 

  31. Nasar-Abbas SM, Siddique KHM, Plummer JA, White PF, Harris D, Dods K, D’Antuono M (2009) Faba bean (Vicia faba L.) seeds darken rapidly and phenolic content falls when stored at higher temperature, moisture and light intensity. LWT Food Sci Technol 42:1703–1711

    Article  CAS  Google Scholar 

  32. Howard LR, Castrodale C, Brownmiller C, Mauromoustakos A (2010) Jam processing and storage effects on blueberry polyphenolics and antioxidant capacity. J Agric Food Chem 58:4022–4029

    Article  CAS  Google Scholar 

  33. Rothwell JA, Medina-Remón A, Pérez-Jiménez J, Neveu V, Knaze V, Slimani N, Scalbert A (2015) Effects of food processing on polyphenol contents: a systematic analysis using Phenol-Explorer data. Mol Nutr Food Res 59:160–170. doi:10.1002/mnfr.201400494

    Article  CAS  Google Scholar 

  34. He F, Pan Q-H, Shi Y, Duan C-Q (2008) Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 13:2674–2703

    Article  CAS  Google Scholar 

  35. Zhao J (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20(9):576–585

    Article  CAS  Google Scholar 

  36. Kaewubon P, Hutadilok-Towatana N, Teixeira da Silva JA, Meesawat U (2015) Ultrastructural and biochemical alterations during browning of pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell Tiss Organ Cult 121:53–69

    Article  CAS  Google Scholar 

  37. Brillouet J-M (2015) On the role of chloroplasts in the polymerization of tannins in tracheophyta: a monograph. Am J Plant Sci 6:1401–1409

    Article  CAS  Google Scholar 

  38. Toivonen PMA, Brummell DA (2008) Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol 48:1–14

    Article  CAS  Google Scholar 

  39. Martinez MV, Whitaker JR (1995) The biochemistry and control of enzymatic browning. Trends Food Sci Technol 6:195–200

    Article  CAS  Google Scholar 

  40. Lattanzio V (2003) Bioactive polyphenols: their role in quality and storability of fruit and vegetables. J Appl Bot 77:128–146

    CAS  Google Scholar 

  41. Pourcel L, Routaboul J-M, Cheynier V, Lepiniec L, Debeaujon I (2006) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12(1):29–36

    Article  Google Scholar 

  42. Pourcel L, Routaboul J-M, Kerhoas L, Caboche M, Lepiniec L, Debeaujona I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  CAS  Google Scholar 

  43. Guyot S, Vercauteren J, Cheynier V (1996) Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenoloxidase. Phytochemistry 42(5):1279–1288

    Article  CAS  Google Scholar 

  44. Tanaka T, Mine C, Watarumi S, Fujioka T, Mihashi K, Zhang Y-J, Kouno I (2002) Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins. J Nat Prod 65:1582–1587

    Article  CAS  Google Scholar 

  45. Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model Legume Medicago truncatula. Plant Physiol 145:601–615. doi:10.1104/pp.107.107326

    Article  CAS  Google Scholar 

  46. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  47. Renard CMGC, Baron A, Guyot S, Drilleau J-F (2001) Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int J Biol Macromol 29:115–125

    Article  CAS  Google Scholar 

  48. Hanlin RL, Hrmova M, Harbertson JF, Downey MO (2010) Review: condensed tannin and grape cell wall interactions and their impact on tannin extractability into wine. Aust J Grape Wine Res 16:173–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial assistance from the NSERC Industrial Research Chair Program and Saskatchewan Pulse Growers as well as instrumentation provided by Thermo Fisher Scientific (San Jose, CA). They also appreciate additional support provided by the Health Sciences and the Pulse Crop Research Crew at the Crop Development Centre, University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahla Mirali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirali, M., Purves, R.W. & Vandenberg, A. Phenolic profiling of green lentil (Lens culinaris Medic.) seeds subjected to long-term storage. Eur Food Res Technol 242, 2161–2170 (2016). https://doi.org/10.1007/s00217-016-2713-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2713-1

Keywords

Navigation