Skip to main content

Advertisement

Log in

Predicting the properties of the whey protein microparticles produced by heat and mechanical treatments

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Whey protein solutions (70 mg mL−1) were subjected to heat and subsequent mechanical treatments at different conditions of temperature (80–90 °C), holding time (0–50 min), pH (4.0–7.0), pressure (10–30 MPa) and number of passes (1–3) through a homogeniser, the resultant products being analysed in terms of particle size [D (v, 0.5)], viscosity (at 100 s−1 shear rate) and aggregation yield. Predicting the final characteristics of the microparticles is of paramount importance to ensure their correct performance in food products. As a result, different microparticulated products, with particle sizes ranging from 1 to 17 µm, viscosities between 4.5 and 65 mPa s and up to 100 % aggregation yield, were produced by taking advantage of the optimisation properties provided by different factorial designs. The reliability of the statistical model was tested, leaDing to acceptable errors, between 4.0 and 27.5 %, for the purposes sought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

WPC:

Whey protein concentrate

MP:

Microparticulated protein

β-Lg:

β-Lactoglobulin

WP:

Whey protein

n :

Flow behaviour index

η :

Apparent viscosity

[P s]:

Protein content in the supernatant phase

[P t]:

Total protein content of the initial solution

T :

Test

pI:

Isoelectric point

P :

Product

References

  1. Lobato-Calleros C, Martı́nez-Torrijos O, Sandoval-Castilla O, Pérez-Orozco JP, Vernon-Carter EJ (2004) Flow and creep compliance properties of reduced-fat yoghurts containing protein-based fat replacers. Int Dairy J 14(9):777–782. doi:10.1016/j.idairyj.2004.02.012

    Article  CAS  Google Scholar 

  2. Akoh CC, Decker EA (1995) Lipid-based fat substitutes. Crit Rev Food Sci Nutr 35(5):405–430. doi:10.1080/10408399509527707

    Article  CAS  Google Scholar 

  3. Purwanti N, van der Goot AJ, Boom R, Vereijken J (2010) New directions towards structure formation and stability of protein-rich foods from globular proteins. Trends Food Sci Technol 21(2):85–94. doi:10.1016/j.tifs.2009.10.009

    Article  CAS  Google Scholar 

  4. Dissanayake M, Vasiljevic T (2009) Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J Dairy Sci 92(4):1387–1397. doi:10.3168/jds.2008-1791

    Article  CAS  Google Scholar 

  5. Sağlam D, Venema P, de Vries R, Sagis LMC, van der Linden E (2011) Preparation of high protein micro-particles using two-step emulsification. Food Hydrocoll 25(5):1139–1148. doi:10.1016/j.foodhyd.2010.10.011

    Article  Google Scholar 

  6. Unnevehr LJ (2013) Food and health: can economics contribute to improved outcomes? Am J Agric Econ 95(2):220–227. doi:10.1093/ajae/aas103

    Article  Google Scholar 

  7. Chung C, Degner B, McClements DJ (2014) Development of reduced-calorie foods: microparticulated whey proteins as fat mimetics in semi-solid food emulsions. Food Res Int 56:136–145. doi:10.1016/j.foodres.2013.11.034

    Article  CAS  Google Scholar 

  8. Akoh CC, Long KD, Flatt WP, Rose BS, Martin RJ (1998) Effects of a structured lipid, Captex, and a protein-based fat replacer, Simplesse, on energy metabolism, body weight, and serum lipids in lean and obese Zucker rats. J Nutrition Biochem 9(5):267–275. doi:10.1016/S0955-2863(98)00017-5

    Article  CAS  Google Scholar 

  9. Dissanayake M, Liyanaarachchi S, Vasiljevic T (2012) Functional properties of whey proteins microparticulated at low pH. J Dairy Sci 95(4):1667–1679. doi:10.3168/jds.2011-4823

    Article  CAS  Google Scholar 

  10. Onwulata CI, Isobe S, Tomasula PM, Cooke PH (2006) Properties of whey protein isolates extruded under acidic and alkaline conditions. J Dairy Sci 89(1):71–81. doi:10.3168/jds.S0022-0302(06)72070-7

    Article  CAS  Google Scholar 

  11. Iordache M, Jelen P (2003) High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innov Food Sci Emerg Technol 4(4):367–376. doi:10.1016/S1466-8564(03)00061-4

    Article  CAS  Google Scholar 

  12. Onwulata CI, Konstance RP, Tomasula PM (2002) Viscous properties oftable microparticulated dairy proteins and sucrose 1. J Dairy Sci 85(7):1677–1683. doi:10.3168/jds.S0022-0302(02)74240-9

    Article  CAS  Google Scholar 

  13. Nicolai T, Britten M, Schmitt C (2011) β-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocoll 25(8):1945–1962. doi:10.1016/j.foodhyd.2011.02.006

    Article  CAS  Google Scholar 

  14. Mehalebi S, Nicolai T, Durand D (2008) Light scattering study of heat-denatured globular protein aggregates. Int J Biol Macromol 43(2):129–135. doi:10.1016/j.ijbiomac.2008.04.002

    Article  CAS  Google Scholar 

  15. de la Fuente MA, Singh H, Hemar Y (2002) Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends Food Sci Technol 13(8):262–274. doi:10.1016/S0924-2244(02)00133-4

    Article  Google Scholar 

  16. Dissanayake M, Ramchandran L, Donkor ON, Vasiljevic T (2013) Denaturation of whey proteins as a function of heat, pH and protein concentration. Int Dairy J 31(2):93–99. doi:10.1016/j.idairyj.2013.02.002

    Article  CAS  Google Scholar 

  17. Britten M, Giroux HJ (2001) Acid-induced gelation of whey protein polymers: effects of pH and calcium concentration during polymerization. Food Hydrocoll 15(4–6):609–617. doi:10.1016/S0268-005X(01)00049-2

    Article  CAS  Google Scholar 

  18. Bryant CM, McClements DJ (2000) Optimizing preparation conditions for heat-denatured whey protein solutions to be used as cold-gelling ingredients. J Food Sci 65(2):259–263. doi:10.1111/j.1365-2621.2000.tb15990.x

    Article  CAS  Google Scholar 

  19. Marangoni AG, Barbut S, McGauley SE, Marcone M, Narine SS (2000) On the structure of particulate gels—the case of salt-induced cold gelation of heat-denatured whey protein isolate. Food Hydrocoll 14(1):61–74. doi:10.1016/S0268-005X(99)00046-6

    Article  CAS  Google Scholar 

  20. Ryan KN, Vardhanabhuti B, Jaramillo DP, van Zanten JH, Coupland JN, Foegeding EA (2012) Stability and mechanism of whey protein soluble aggregates thermally treated with salts. Food Hydrocoll 27(2):411–420. doi:10.1016/j.foodhyd.2011.11.006

    Article  CAS  Google Scholar 

  21. Baussay K, Bon CL, Nicolai T, Durand D, Busnel J-P (2004) Influence of the ionic strength on the heat-induced aggregation of the globular protein β-lactoglobulin at pH 7. Int J Biol Macromol 34(1–2):21–28. doi:10.1016/j.ijbiomac.2003.11.003

    Article  CAS  Google Scholar 

  22. Schokker EP, Singh H, Creamer LK (2000) Heat-induced aggregation of β-lactoglobulin A and B with α-lactalbumin. Int Dairy J 10(12):843–853. doi:10.1016/S0958-6946(01)00022-X

    Article  CAS  Google Scholar 

  23. Afizah MN, Rizvi SSH (2014) Functional properties of whey protein concentrate texturized at acidic pH: effect of extrusion temperature. LWT Food Sci Technol 57(1):290–298. doi:10.1016/j.lwt.2014.01.019

    Article  Google Scholar 

  24. Ndoye FT, Erabit N, Alvarez G, Flick D (2012) Influence of whey protein aggregation on the residence time distribution in a tubular heat exchanger and a helical holding tube during heat treatment process. J Food Eng 112(3):158–167. doi:10.1016/j.jfoodeng.2012.03.036

    Article  CAS  Google Scholar 

  25. Bryant CM, McClements DJ (1999) Ultrasonic spectrometry study of the influence of temperature on whey protein aggregation. Food Hydrocoll 13(6):439–444. doi:10.1016/S0268-005X(99)00018-1

    Article  CAS  Google Scholar 

  26. Erabit N, Flick D, Alvarez G (2014) Formation of β-lactoglobulin aggregates during thermomechanical treatments under controlled shear and temperature conditions. J Food Eng 120:57–68. doi:10.1016/j.jfoodeng.2013.07.003

    Article  CAS  Google Scholar 

  27. Spiegel T, Huss M (2002) Whey protein aggregation under shear conditions—effects of pH-value and removal of calcium. Int J Food Sci Technol 37(5):559–568. doi:10.1046/j.1365-2621.2002.00612.x

    Article  CAS  Google Scholar 

  28. Tolkach A, Steinle S, Kulozik U (2005) Optimization of thermal pretreatment conditions for the separation of native α-lactalbumin from whey protein concentrates by means of selective denaturation of β-lactoglobulin. J Food Sci 70(9):E557–E566. doi:10.1111/j.1365-2621.2005.tb08319.x

    Article  CAS  Google Scholar 

  29. Erabit N, Flick D, Alvarez G (2013) Effect of calcium chloride and moderate shear on β-lactoglobulin aggregation in processing-like conditions. J Food Eng 115(1):63–72. doi:10.1016/j.jfoodeng.2012.09.020

    Article  CAS  Google Scholar 

  30. Rademacher B, Hinrichs J (2002) Ultra high pressure technology for dairy products. Bull Int Dairy Fed 374:12–18

    CAS  Google Scholar 

  31. Kilcast D, Clegg S (2002) Sensory perception of creaminess and its relationship with food structure. Food Qual Prefer 13(7–8):609–623. doi:10.1016/S0950-3293(02)00074-5

    Article  Google Scholar 

  32. Lieske B, Konrad G (1994) Microparticulation of whey protein: related factors affecting the solubility. Z Lebensm Unters Forch 199(4):289–293. doi:10.1007/BF01193314

    Article  CAS  Google Scholar 

  33. Hinrichs J (2001) Incorporation of whey proteins in cheese. Int Dairy J 11(4–7):495–503. doi:10.1016/S0958-6946(01)00071-1

    Article  CAS  Google Scholar 

  34. Saffon M, Britten M, Pouliot Y (2011) Thermal aggregation of whey proteins in the presence of buttermilk concentrate. J Food Eng 103(3):244–250. doi:10.1016/j.jfoodeng.2010.10.020

    Article  CAS  Google Scholar 

  35. Simmons MJH, Jayaraman P, Fryer PJ (2007) The effect of temperature and shear rate upon the aggregation of whey protein and its implications for milk fouling. J Food Eng 79(2):517–528. doi:10.1016/j.jfoodeng.2006.02.013

    Article  CAS  Google Scholar 

  36. Donato L, Schmitt C, Bovetto L, Rouvet M (2009) Mechanism of formation of stable heat-induced β-lactoglobulin microgels. Int Dairy J 19(5):295–306. doi:10.1016/j.idairyj.2008.11.005

    Article  CAS  Google Scholar 

  37. Hollar CM, Parris N, Hsieh A, Cockley KD (1995) Factors affecting the denaturation and aggregation of whey proteins in heated whey protein concentrate mixtures. J Dairy Sci 78(2):260–267. doi:10.3168/jds.S0022-0302(95)76633-4

    Article  CAS  Google Scholar 

  38. Lobato-Calleros C, Robles-Martinez JC, Caballero-Perez JF, Vernon-Carter EJ, Aguirre-Mandujano E (2001) Fat replacers in low-fat Mexican Manchego cheese. J Texture Stud 32(1):1–14. doi:10.1111/j.1745-4603.2001.tb01030.x

    Article  Google Scholar 

  39. McMahon DJ, Alleyne MC, Fife RL, Oberg CJ (1996) Use of fat replacers in low fat mozzarella cheese. J Dairy Sci 79(11):1911–1921. doi:10.3168/jds.S0022-0302(96)76560-8

    Article  CAS  Google Scholar 

  40. Meza B, Verdini R, Rubiolo A (2010) Viscoelastic behavior during the ripening of a commercial low-fat soft cheese. Dairy Sci Technol 90(5):589–599. doi:10.1051/dst/2010012

    Article  CAS  Google Scholar 

  41. Sandoval-Castilla O, Lobato-Calleros C, Aguirre-Mandujano E, Vernon-Carter EJ (2004) Microstructure and texture of yogurt as influenced by fat replacers. Int Dairy J 14(2):151–159. doi:10.1016/S0958-6946(03)00166-3

    Article  CAS  Google Scholar 

  42. Torres IC, Amigo Rubio JM, Ipsen R (2012) Using fractal image analysis to characterize microstructure of low-fat stirred yoghurt manufactured with microparticulated whey protein. J Food Eng 109(4):721–729. doi:10.1016/j.jfoodeng.2011.11.016

    Article  CAS  Google Scholar 

  43. Torres IC, Janhøj T, Mikkelsen BØ, Ipsen R (2011) Effect of microparticulated whey protein with varying content of denatured protein on the rheological and sensory characteristics of low-fat yoghurt. Int Dairy J 21(9):645–655. doi:10.1016/j.idairyj.2010.12.013

    Article  CAS  Google Scholar 

  44. Yazici F, Akgun A (2004) Effect of some protein based fat replacers on physical, chemical, textural, and sensory properties of strained yoghurt. J Food Eng 62(3):245–254. doi:10.1016/S0260-8774(03)00237-1

    Article  Google Scholar 

  45. Janhoj T, Petersen CB, Frost MB, Ipsen R (2006) Sensory and rheological characterization of low-fat stirred yogurt. J Texture Stud 37(3):276–299. doi:10.1111/j.1745-4603.2006.00052.x

    Article  Google Scholar 

  46. Liu H, Xu XM, Guo SD (2007) Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT Food Sci Technol 40(6):946–954. doi:10.1016/j.lwt.2006.11.007

    Article  CAS  Google Scholar 

  47. Toro-Sierra J, Schumann J, Kulozik U (2013) Impact of spray-drying conditions on the particle size of microparticulated whey protein fractions. Dairy Sci Technol 93(4–5):487–503. doi:10.1007/s13594-013-0124-7

    Article  CAS  Google Scholar 

  48. Dissanayake M, Ramchandran L, Piyadasa C, Vasiljevic T (2013) Influence of heat and pH on structure and conformation of whey proteins. Int Dairy J 28(2):56–61. doi:10.1016/j.idairyj.2012.08.014

    Article  CAS  Google Scholar 

  49. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  50. Bryant CM, McClements DJ (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci Technol 9(4):143–151. doi:10.1016/S0924-2244(98)00031-4

    Article  CAS  Google Scholar 

  51. Singh H, Havea P (2003) Thermal denaturation aggregation and gelation of whey proteins. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry—1 proteins. Springer, New York, USA, pp 1261–1287. doi:10.1007/978-1-4419-8602-3_34

    Chapter  Google Scholar 

  52. Jovanović S, Barać M, Maćej O (2005) Whey proteins-properties and possibility of application. Mljekarstvo 55(3):215–233

    Google Scholar 

  53. Jung J-M, Savin G, Pouzot M, Schmitt C, Mezzenga R (2008) Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules 9(9):2477–2486. doi:10.1021/bm800502j

    Article  CAS  Google Scholar 

  54. Lucey JA, Singh H (2003) Acid coagulation of milk. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry—1 proteins. Springer, New York, US, pp 1001–1026. doi:10.1007/978-1-4419-8602-3_34

    Chapter  Google Scholar 

  55. de Wit JN, Tv Kessel (1996) Effects of ionic strength on the solubility of whey protein products. A colloid chemical approach. Food Hydrocoll 10(2):143–149. doi:10.1016/S0268-005X(96)80028-2

    Article  Google Scholar 

  56. Verheul M, Roefs SPFM, de Kruif KG (1998) Kinetics of heat-induced aggregation of β-lactoglobulin. J Agric Food Chem 46(3):896–903. doi:10.1021/jf970751t

    Article  CAS  Google Scholar 

  57. Majhi PR, Ganta RR, Vanam RP, Giger K, Dubin PL (2006) Electrostatically driven protein aggregation: β-lactoglobulin at low ionic strength. Langmuir 22:9150–9159. doi:10.1021/la053528w

    Article  CAS  Google Scholar 

  58. Considine T, Patel HA, Anema SG, Singh H, Creamer LK (2007) Interactions of milk proteins during heat and high hydrostatic pressure treatments—a review. Innov Food Sci Emerg Technol 8(1):1–23. doi:10.1016/j.ifset.2006.08.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the dairy company CAPSA FOOD which provided part of the products used in this study and other valuable information and IDEPA for the economic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Riera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez, A., Fernández, L., Balbarie, P. et al. Predicting the properties of the whey protein microparticles produced by heat and mechanical treatments. Eur Food Res Technol 242, 1211–1220 (2016). https://doi.org/10.1007/s00217-015-2625-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2625-5

Keywords

Navigation