Skip to main content
Log in

Effect of milk fat content on the viscoelasticity of mozzarella-type cheese curds

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effect of fat content in cheese curds on their rheological properties was examined using dynamic shear measurements. Surplus fat addition to milk samples caused two distinct types of changes in the temperature dependence of the viscoelastic moduli of resultant curds. The first was a significant reduction in the moduli over a wide temperature range, which is attributed to the presence of liquefied fat globules within the milk protein network. The second was the excess contribution to the low-temperature moduli owing to the reinforcing effect of solidified fat globules. An upward shift in the sol–gel phase transition temperature driven by an increased fat content was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michalski MC, Ollivon M, Briard V, Leconte N, Lopez C (2004) Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chem Phys Lipids 132:247–261

    Article  CAS  Google Scholar 

  2. Walstra P, Wouters JTM, Geurts TJ (2006) Dairy science and technology, 2nd edn. CRC Press, Florida

  3. Al-Nabulsi A, Shaker R, Osaili T, Clark S, Harte F, Barbosa-Cánovas G (2012) Impact of high hydrostatic pressure and heat treatments on milk gel properties: a comparative rheological study. Int J Food Prop 15:613–627

    Article  CAS  Google Scholar 

  4. Catarino I, Martins APL, Duarte E, Prudêncio ES, de Pinho MN (2013) Rennet coagulation of sheep milk processed by ultrafiltration at low concentration factors. J Food Eng 114:249–254

    Article  CAS  Google Scholar 

  5. Mistry VV (2001) Low fat cheese technology. Int Dairy J 11:413–422

    Article  CAS  Google Scholar 

  6. Banks JM (2004) The technology of low-fat cheese manufacture. Int J Dairy Technol 57:199–207

    Article  Google Scholar 

  7. Hennelly PJ, Dunne PG, O’Sullivan M, O’Riordan ED (2006) Textural, rheological and microstructural properties of imitation cheese containing inulin. J Food Eng 75:388–395

    Article  CAS  Google Scholar 

  8. Childs JL, Drake M (2009) Consumer perception of fat reduction in cheese. J Sens Stud 24:902–921

    Article  Google Scholar 

  9. Skeie S, Alseth G, Ostlie H, Abrahamsen R, Johansen A, Oyaas J (2013) Improvement of the quality of low-fat cheese using a two-step strategy. Int Dairy J 33:153–162

    Article  CAS  Google Scholar 

  10. Johnston DE (1984) Application of polymer cross-linking theory to rennet-induced milk gels. J Dairy Res 51:91–101

    Article  CAS  Google Scholar 

  11. Michalski MC, Camier B, Briard V, Leconte N, Gassi JY, Goudédranche H, Michel F, Fauquant J (2004) The size of native milk fat globules affects physico-chemical and functional properties of emmental cheese. Lait 84:343–358

    Article  CAS  Google Scholar 

  12. Desai N, Nolting J (1994) Microstructure studies of reduced fat cheeses containing fat substitute. In: Malin EL, Tunick MH (eds) Chemistry of structure—function relationships in cheese. Plenum Press, New York

    Google Scholar 

  13. Jensen RG, Ferris AM, Lammi-Keefe CJ (1991) The composition of milk fat. J Dairy Sci 74:3228–3243

    Article  CAS  Google Scholar 

  14. Lopez C (2005) Focus on the supramolecular structure of milk fat in dairy products. Reprod Nurtition Dev 45:497–511

    Article  CAS  Google Scholar 

  15. Pilhofer GM, Lee HC, McCarthy MJ, Tong PS, German JB (1994) Functionality of milk fat in foam formation and stability. Lait 77:55–63

    CAS  Google Scholar 

  16. Gunasekaran S, Ak MM (2000) Dynamic oscillatory shear testing of foods-selected applications. Trends Food Sci Technol 11:115–127

    Article  CAS  Google Scholar 

  17. Tunick MH (2011) Small-strain dynamic rheology of food protein networks. J Agric Food Chem 59:1481–1486

    Article  CAS  Google Scholar 

  18. Noronha N, Duggan E, Ziegler GR, O’Riordan ED, O’Sullivan M (2008) Inclusion of starch in imitation cheese: its influence on water mobility and cheese functionality. Food Hydrocoll 22:1612–1621

    Article  CAS  Google Scholar 

  19. Mounsey JS, O’Riordan ED (2008) Alteration of imitation cheese structure and melting behaviour with wheat starch. Eur Food Res Technol 226:1013–1019

    Article  CAS  Google Scholar 

  20. van der Vaart K, Depypere F, Graef VD, Schall P, Fall A, Bonn D, Dewettinck K (2013) Dark chocolate’s compositional effects revealed by oscillatory rheology. Eur Food Res Technol 236:931–942

    Article  CAS  Google Scholar 

  21. Zhang Y, Huang L, Wei Z (2014) Effects of additional fibrils on structural and rheological properties of rice bran albumin solution and gel. Eur Food Res Technol 239:971–978

    Article  CAS  Google Scholar 

  22. Shima H, Tanimoto M (2015) Quantifying thermally induced flowability of rennet cheese curds. Int J Food Prop 18:2277–2283

    Article  CAS  Google Scholar 

  23. Tung CYM, Dynes PJ (1982) Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci 27:569–574

    Article  CAS  Google Scholar 

  24. Ross-Murphy SB (1995) Rheological characterisation of gels. J Texture Stud 26:391–400

    Article  Google Scholar 

  25. van Vileta T, Roefs SPFM, Walstra PZ (1989) Rheological properties of casein gels. J Dairy Res 56:529–534

    Article  Google Scholar 

  26. Mleko S, Janas P, Pielecki J (2005) Study on stress relaxation behavior of rennet cheeses at different temperature. J Food Sci Technol 42:58–60

    Google Scholar 

  27. Ak M, Gunasekaran S (1996) Evaluating rheological properties of mozzarella cheese by the squeezing flow method. J Texture Stud 26:695–712

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Emeritus Prof. Niki, R., Prof. Nishinari, K., Prof. Sato, K. and Mr. Ueda, K. for fruitful discussions and technical supports. This work was supported by JSPS KAKENHI Grant Numbers 25390147 and 25560035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Shima.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shima, H., Tanimoto, M. Effect of milk fat content on the viscoelasticity of mozzarella-type cheese curds. Eur Food Res Technol 242, 157–162 (2016). https://doi.org/10.1007/s00217-015-2525-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2525-8

Keywords

Navigation