Skip to main content
Log in

Effect of photo-Fenton reaction on physicochemical parameters in white wine and its influence on ochratoxin A contents using response surface methodology

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Photo-Fenton reaction is being used in different industrial processes due to their efficient degradation of toxic organic pollutants. In this study, the effect of induced photo-Fenton reaction (H2O2/Fe2+/vis) in a white wine was investigated in the presence of visible light irradiation from light-emitting diodes, at constant temperature in all the experiments. The statistical design was based on three independent factors (H2O2/Fe2+/light) and five responses titratable acidity (TA), pH, total polyphenol index (TPI), total colour differences (ΔE ab*) and ochratoxin A (OTA) using response surface methodology by Box–Behnken design. The total sulphur dioxide, browning index (BI) and major volatiles of the wine changes were also studied. The concentration of OTA was evaluated using enzyme-linked immunosorbent assay method. At the tested conditions, minor variations on some oenological parameters (TA and pH) were observed after photo-Fenton-controlled reaction, but other deleterious effects were observed (ΔE ab*, TPI and BI). The optimum 61.5 % OTA removal was achieved for irradiation dosage of 1410 lx, H2O2 and Fe2+ dosages over 2.08 and 0.085 mM L−1, respectively. This study shows that reduction of OTA may be possible using an induced photo-Fenton reaction in an artificially contaminated white wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Danilewicz JC (2003) Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: central role of iron and copper. Am J Enol Vitic 54:73–85

    CAS  Google Scholar 

  2. Waterhouse A, Lauri VF (2006) Oxidation of wine phenolics: a critical evaluation and hypotheses. Am J Enol Vitic 57:306–313

    CAS  Google Scholar 

  3. Karbowiak T, Gougeon RD, Alinc J-B, Brachais L, Debeaufort F, Voilley A, Chassagne D (2010) Wine oxidation and the role of cork. Crit Rev Food Sci Nutr 50:20–52

    Article  CAS  Google Scholar 

  4. Elias RJ, Waterhouse AL (2010) Controlling the Fenton reaction in wine. J Agric Food Chem 58:1699–1707

    Article  CAS  Google Scholar 

  5. Li H, Guo A, Wang H (2008) Mechanisms of oxidative browning of wine. Food Chem 108:1–13

    Article  CAS  Google Scholar 

  6. Panizza M, Cerisola G (2011) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res 35:3987–3992

    Article  Google Scholar 

  7. Deng Y (2007) Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. J Hazard Mater 146:334–340

    Article  CAS  Google Scholar 

  8. Méndez-Arriaga F, Esplugas S, Giménez J (2010) Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water Res 44:589–595

    Article  Google Scholar 

  9. Bidga RJ (1995) Consider Fenton chemistry for wastewater treatment. Chem Eng Prog 91:62–66

    Google Scholar 

  10. Machulek A, Quina FH, Gozzi F, Silva VO, Friedrich LC, Moraes EF (2012) Fundamental mechanistic studies of the photo-Fenton reaction for the degradation of organic pollutants. In: Puzyn T (ed) Organic pollutants ten years after the Stockholm convention: environmental and analytical update. Intech Europe Rijeka, Croatia

    Google Scholar 

  11. Ghiselli G, Jardim WF, Litter MI, Mansilla HD (2004) Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. J Photochem Photobiol A 167:59–67

    Article  CAS  Google Scholar 

  12. Battilani P, Magan N, Logrieco A (2006) European research on ochratoxin A in grapes and wine. Int J Food Microbiol 111:S2–S4

    Article  CAS  Google Scholar 

  13. Mantle PG (2002) Risk assessment and the importance of ochratoxins. Int Biodeter Biodegr 50:143–146

    Article  CAS  Google Scholar 

  14. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  Google Scholar 

  15. Commission Regulation EC 1881/06 of 19 December 2006, setting maximum levels for certain contaminants in foodstuffs. Off J Eur Comm L364:5–24

  16. Varga J, Kocsubé S, Péteri Z, Vágvölgyi C, Tóth B (2010) Chemical, physical and biological approaches to prevent ochratoxin induced toxicoses in humans and animals. Toxins 2:1718–1750

    Article  CAS  Google Scholar 

  17. Kabak B, Dobson ADW, Var I (2006) Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit Rev Food Sci Nutr 46:593–619

    Article  CAS  Google Scholar 

  18. Espejo F, Armada S (2009) Effect of activated carbon on ochratoxin A reduction in “Pedro Ximenez” sweet wine made from off-vine dried grapes. Eur Food Res Technol 299:255–262

    Article  Google Scholar 

  19. Bornet A, Teissedre PL (2008) Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. Eur Food Res Technol 226:681–689

    Article  CAS  Google Scholar 

  20. Appell M, Jackson MA (2012) Sorption of ochratoxin A from aqueous solutions using β-cyclodextrin-polyurethane polymer. Toxins 4:98–109

    Article  CAS  Google Scholar 

  21. Tomašević-Čanović M, Daković A, Rottinghaus G, Matijašević S, Ðuričić M (2003) Surfactant modified zeolites–new efficient adsorbents for mycotoxins. Micropor Mesopor Mat 61:173–180

    Article  Google Scholar 

  22. Varga J, Péteri Z, Tábori K, Téren J, Vágvölgyi C (2005) Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates. Int J Food Microbiol 99:321–328

    Article  CAS  Google Scholar 

  23. Bejaoui H, Mathieu F, Taillandier P, Lebrihi A (2006) Biodegradation of ochratoxin A by Aspergillus section Nigri species isolated from French grapes: a potential means of ochratoxin A decontamination in grape juices and musts. FEMS Microbiol Lett 255:203–208

    Article  CAS  Google Scholar 

  24. Abrunhosa L, Venâncio A (2007) Isolation and purification of an enzyme hydrolyzing ochratoxin A from Aspergillus niger. Biotechnol Lett 29:1909–1914

    Article  CAS  Google Scholar 

  25. Var I, Erginkaya Z, Kabak B (2009) Reduction of ochratoxin A levels in white wine by yeast treatments. J Inst Brew 115:30–34

    Article  CAS  Google Scholar 

  26. Fuchs S, Sontag G, Stidl R, Ehrlich V, Kundi M, Knasmüller S (2008) Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem Toxicol 46:1398–1407

    Article  CAS  Google Scholar 

  27. Visconti A, Perrone G, Cozzi G, Solfrizzo M (2008) Managing ochratoxin A risk in the grape-wine food chain. Food Addit Contam A 25:193–202

    Article  CAS  Google Scholar 

  28. Patel UD, Govindarajan P, Dave PJ (1989) Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation. Appl Environm Microbiol 55:465–467

    CAS  Google Scholar 

  29. Kostechi M, Golinski P, Uchman W, Grabarkiewicz-Szczesna J (1991) Decomposition of ochratoxin A by heat and gamma-irradiation. IARC Sci Publ 115:109–111

    Google Scholar 

  30. Di Stefano V, Pitonzo R, Avellone G (2014) Effect of gamma irradiation on aflatoxins and ochratoxin A reduction in almond samples. J Food Res 3:113–118

    Google Scholar 

  31. Boudra H, Le Bars P, Le Bars J (1995) Thermostability of ochratoxin A in wheat under two moisture conditions. Appl Environ Microb 61:1156–1158

    CAS  Google Scholar 

  32. Bullerman LB, Bianchini A (2007) Stability of mycotoxins during food processing. Int J Food Microbiol 119:140–146

    Article  CAS  Google Scholar 

  33. Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food Agric 89:549–554

    Article  CAS  Google Scholar 

  34. Cigić I, Strlič M, Schreiber A, Kocjančič M, Pihlar B (2006) Ochratoxin A in wine: its determination and photostability. Anal Lett 39:1475–1488

    Article  Google Scholar 

  35. Gillman IG, Yezek JM, Manderville RA (1998) Ochratoxin A acts as a photoactivatable DNA cleaving agent. Chem Commun 6:647–648

    Article  Google Scholar 

  36. Schmidt-Heydt M, Bode H, Raupp F, Geisen R (2010) Influence of light on ochratoxin biosynthesis by Penicillium. Mycotox Res 26:1–18

    Article  CAS  Google Scholar 

  37. Schmidt-Heydt M, Cramer B, Graf I, Lerch S, Humpf H-U, Geisen R (2012) Wavelength-dependent degradation of ochratoxin and citrinin by light in vitro and in vivo and its implications on Penicilium. Toxins 4:1535–1551

    Article  CAS  Google Scholar 

  38. Moreau M, Lescure G, Agoulon A, Svinareff P, Orange N, Feuilloley M (2013) Application of the pulsed light technology to mycotoxin degradation and inactivation. J Appl Toxicol 33:357–363

    Article  CAS  Google Scholar 

  39. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2000) Handbook of enology. The chemistry of wine stabilization and treatments, vol 2. Wiley, New York

    Google Scholar 

  40. Fouler SG, Trivedi AB, Kitabatake N (1994) Detoxification of citrinin and ochratoxin A by hydrogen peroxide. J AOAC Int 77:631–637

    CAS  Google Scholar 

  41. Altuğ T, Yousef AE, Marth EH (1990) Degradation of Aflatoxin B1 in dried figs by sodium bisulfite with or without heat, ultraviolet energy or hydrogen peroxide. J Food Prot 53:581–582

    Google Scholar 

  42. Jalili M, Jinap S (2012) Reduction of mycotoxins in white pepper. Food Addit Contam A 29:1947–1958

    Article  CAS  Google Scholar 

  43. Guedes AMF, Madeira LMP, Boaventura RAR, Costa CAV (2003) Fenton oxidation of cork cooking wastewater-overall kinetic analysis. Water Res 37:3061–3069

    Article  CAS  Google Scholar 

  44. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  Google Scholar 

  45. Tripathi S, Mishra HN (2011) Modeling and optimization of enzymatic degradation of Aflatoxin B1 (AFB1) in red chili powder using response surface methodology. Food Bioprocess Technol 4:770–780

    Article  CAS  Google Scholar 

  46. Laurie VF, Waterhouse AL (2006) Oxidation of glycerol in the presence of hydrogen peroxide and iron in model solutions and wine. Potential effects on wine color. J Agric Food Chem 54:4668–4673

    Article  CAS  Google Scholar 

  47. Gislason NE, Currie BL, Waterhouse AL (2011) Novel antioxidant reactions of cinnamates in wine. J Agric Food Chem 59:6221–6226

    Article  CAS  Google Scholar 

  48. International Organisation of Vine and Wine (OIV) (2011) Compendium of international methods of wine and must analysis, vol 1. France, Paris

    Google Scholar 

  49. Commission Regulation EC 2870/00 of 19 December 2000, lying down Community reference for the analysis of spirit drinks. Off J Eur Comm L333:20–46

  50. Sioumis N, Kallithraka S, Makris DP, Kefalas P (2006) Kinetics of browning onset in white wines: influence of principal redox-active polyphenols and impact on the reducing capacity. Food Chem 94:98–104

    Article  CAS  Google Scholar 

  51. Dong Y, Han S, Dong S, Wu J, Ding Z (2011) Enhanced catalytic activity of Fe bimetallic modified PAN fiber complexes prepared with different assisted metal ions for degradation of organic dye. Catal Today 175:299–309

    Article  CAS  Google Scholar 

  52. Bejarano MJR, Dodero MCR, Barroso CG (2010) Optimizing the process of making sweet wines to minimize the content of ochratoxin A. J Agric Food Chem 58:13006–13012

    Article  Google Scholar 

  53. Arslan-Alaton L, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A 202:142–153

    Article  CAS  Google Scholar 

  54. De Heredia JB, Torregrosa J, Dominguez JR, Peres JA (2001) Kinetic model for phenolic compound oxidation by Fenton’s reagent. Chemosphere 45:85–90

    Article  Google Scholar 

  55. Carlsen C, Stapelfeldt H (1997) Light sensitivity of elderberry extract. Quantum yields for photodegradation in aqueous solution. Food Chem 60:383–387

    Article  CAS  Google Scholar 

  56. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Env Sci Tec 36:1–84

    Article  CAS  Google Scholar 

  57. Sekaran G, Karthikeyan S, Evvie C, Boopathy R, Maharaja P (2013) Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater. Clean Techn Environ Policy 15:245–253

    Article  CAS  Google Scholar 

  58. Sadilova E, Carle R, Stintzing FC (2007) Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol Nutr Food Res 51:1461–1471

    Article  CAS  Google Scholar 

  59. Kallithraka S, Salacha MI, Tzourou I (2009) Changes in phenolic composition and antioxidant activity of white wine during bottle storage: accelerated browning test versus bottle storage. Food Chem 113:500–505

    Article  CAS  Google Scholar 

  60. Maury C, Clark AC, Scollary GR (2010) Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions. Anal Chim Acta 660:81–85

    Article  CAS  Google Scholar 

  61. Simpson RF (1982) Factors affecting oxidative browning of white wine. Vitis 21:233–239

    CAS  Google Scholar 

  62. Oliveira CM, Ferreira AC, De Freitas V, Silva AMS (2011) Oxidation mechanisms occurring in wines. Food Res Int 44:1115–1126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Espejo.

Ethics declarations

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espejo, F. Effect of photo-Fenton reaction on physicochemical parameters in white wine and its influence on ochratoxin A contents using response surface methodology. Eur Food Res Technol 242, 91–106 (2016). https://doi.org/10.1007/s00217-015-2521-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2521-z

Keywords

Navigation